1 TimeGPT 简介
TimeGPT 是第一个能针对时间序列的基础大模型!
这就意味着,它能够为训练期间没见过的那些多样化的数据集,做出准确的预测。而且呢,我们评估了一下这个模型,发现它与统计、机器学习和深度学习方法比起来,性能、效率和简单性都表现得超级好!
这项研究也给我们带来了一个启示:**AI其他领域的见解,其实也可以很好地应用到时间序列分析上。**这样一来,大规模的时间序列模型就能借助当代深度学习的进步,帮助我们更准确地预测未来,减少不确定性。
2 时间序列
时间序列是什么呢?简单来说,它就是按照时间顺序排列的一系列数据。这些数据可以帮助我们识别出时间模式、趋势和周期性变化,从而预测未来的价值,为决策过程提供信息。不过,虽然大家都想预测未来,但目前对于时间序列的理论和实践理解,其实还没有达成共识。
在深度学习方面,预测界也存在一些分歧。有些人觉得深度学习方法真的很有用,能够更准确地预测;但也有些人持怀疑态度,觉得它可能没那么准确,还可能很复杂。不过,现在有了TimeGPT这个新模型,相信这些疑虑都会慢慢消散啦!它不仅能准确预测多样化数据集,而且在性能、效率和简单性方面也都表现得很好。所以,如果你对时间序列分析感兴趣,或者想更准确地预测未来,那就一定要关注这个新模型啦!
图1 单系列预测和多系列预测示意图
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
3 文献综述
深度学习预测模型在Makridakis比赛中赢了,现在被很多产业用在大型任务上。它最开始成功是因为改进了RNN和CNN,这两种方法本来是为了NLP和CV用的。但结果它们在预测时间序列时做得特别棒。另一种方法叫做前馈网络,因为它的计算既快又简单,所以也被常常使用。最近,基于Transformer的模型越来越受欢迎,因为在大规模和复杂的任务中,它们表现得特别出色。虽然我们还没有完全了解基础模型在时间序列预测中的潜力,但已经有一些迹象显示它可能也很有用。
4 时间序列的大模型
基础模型依赖跨领域泛化能力,尤其是面对新数据集。迁移学习是将一个任务的知识用于新任务。预测模型给出一个函数fθ : X 7→ Y,其中X是特征空间,Y是因变量空间。我们考虑X = {y[0:t] , x[0:t+h]}和Y = {y[t+1:t+h]},目标是估计以下条件分布:
迁移学习简单来说,就是先在一个大数据集上训练好一个模型,然后再用这个模型去处理另一个新任务。在这个过程中,有两种方式:一种是零样本学习,就是直接用这个训练好的模型去处理新任务;另一种是微调,就是在新的数据集上再训练一下这个模型,让它更好地适应新任务。
TimeGPT这个模型的基础思想是,利用大规模公开的时间序列数据集来训练模型,这样模型就能洞察到很多时间上的规律。而且,数据集越大,模型的表现也就越好。TimeGPT用了很多不同的数据集,所以它能够识别出很多时间上的模式,从而在处理新任务时表现得更好。
5 TimeGPT
5.1 介绍及使用
TimeGPT是Nixtla公司研发的一个用于预测任务的智能模型。这个模型采用了生成式预训练Transformer技术,有自我关注机制和局部位置编码。它由很多层的编码器和解码器组成,每个部分都有残差连接和层归一化,使得预测更准确。
TimeGPT这个模型很强大,它可以处理不同频率和特征的时间序列,也能适应不同大小的输入和预测范围。最厉害的是,它只需要用历史数据作为输入,不用再次训练,就能对新的时间序列进行准确的预测。
为了让TimeGPT更加强大,开发者们用了历史上最大的数据集来训练它,这个数据集包含了超过1000亿行的金融、天气、能源和网络数据。这么一来,TimeGPT就能更好地学习和理解各种数据模式,提高预测的准确率。
为了让大家都能方便地使用TimeGPT,开发者们还提供了一个API接口。通过这个接口,用户可以轻松地调用TimeGPT的预测功能,来预测未来的事件。这样一来,无论是做金融分析、天气预报,还是其他需要预测的任务,TimeGPT都能帮你一把。
安装
pip install nixtlats
如何使用
只需导入库,设置好凭证,然后用两行代码就可以开始预测!
df = pd.read_csv('https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv')
from nixtlats import TimeGPT
timegpt = TimeGPT(# defaults to os.environ.get("TIMEGPT_TOKEN")
token ='my_token_provided_by_nixtla')
fcst_df = timegpt.forecast(df, h=24, level=[80,90])
"""INFO:nixtlats.timegpt:Validating inputs...
INFO:nixtlats.timegpt:Preprocessing dataframes...
INFO:nixtlats.timegpt:Inferred freq: H
INFO:nixtlats.timegpt:Restricting input...
INFO:nixtlats.timegpt:Calling Forecast Endpoint..."""
timegpt.plot(df, fcst_df, level=[80,90], max_insample_length=24*5)
5.2 训练数据集
TimeGPT的训练过程可不是闹着玩的,它用了一个超大的公开时间序列数据集,这个数据集有1000亿个数据点呢!包括了金融、经济等多个方面。这个数据集有个特点,就是变化多端,有时间模式、季节性、周期和趋势,还有噪声和异常值呢。在处理这些数据时,我们只是简单地做了些基本的操作,比如格式化、填补缺失值等,尽量保留了原始信息。这种处理方式让TimeGPT能应对各种复杂场景,提升它的稳定性和泛化能力,这样就能更准确地预测未知时间序列了。
5.3 训练TimeGPT
为了训练TimeGPT,我们在NVIDIA A10G GPU集群上搞了一番。我们试着调整学习率、批大小等超参数,发现大的批大小和小的学习率效果更好。我们用PyTorch框架进行训练,还用了Adam方法,学习率衰减到初始值的12%。
5.4 不确定度量化
概率预测能帮助我们评估模型预测的不确定性,这在风险评估和决策时很有用。保形预测是个不错的方法,它能生成具有指定覆盖率精度的预测区间,而且不需要严格的分布假设,适用于模型和时间序列的未知领域。在新时间序列推理中,我们用滚动预测来估算模型预测特定目标时间序列的误差。
图4 TimeGPT和各组模型在月频率上的相对平均绝对误差(rMAE)。图中每个豆子代表一组模型的rMAE分布,中心线显示平均值。TimeGPT的性能领先,其次是深度学习方法、统计方法、机器学习和基线模型。其他频率的结果类似。
图2 TimeGPT 在最大的公开时间序列集合中进行了训练,并且可以预测未见过的时间序列,而无需重新训练其参数
6 实验结果
传统的方法来评估预测模型的效果,比如把数据分成训练集和测试集,可能没办法很好地评估出模型的真实能力。因为一个好的预测模型,要能预测出全新、以前从没见过的数据序列。
咱们这节就要探讨一下,TimeGPT这个模型到底有多厉害。咱们拿了大量的、各种领域的时间序列数据来测试它,有三十多万个呢!这些测试数据都是TimeGPT之前没见过的。咱们在每个时间序列的最后一个预测窗口进行评估,这个窗口的长度会根据数据采样的频率而变化。
TimeGPT模型就是根据过去的数据来预测未来的,就像图3那样,而且它在预测的时候不会重新训练它的权重,这就是所谓的“零样本”预测。咱们还根据不同的频率设定了不同的预测范围,这样更能反映出真实应用的情况。比如说,频率为12的时候就表示每个月的数据,1就表示每周,7表示每天,24就表示每小时的数据。
图3 新时间序列的推断。TimeGPT以目标值的历史值和额外的外生变量作为输入,生成预测。我们依靠基于历史误差的保形预测来估计预测区间。
本文研究了基准测试中的性能分析,涉及基线、统计、机器学习和神经预测模型。基线和统计模型基于历史值训练,机器学习采用全局和深度学习,排除了Prophet和ARIMA等模型。评估指标包括相对平均绝对误差和相对均方根误差,这些指标以季节性朴素模型为基准归一化,提高了结果的可解释性,并有助于比较不同频率的结果。为确保数值稳定性和评估一致性,这些指标进行了全局归一化处理。具体计算见方程2。
6.1 零样本推理
TimeGPT在零样本推理测试中表现卓越,无需微调即可在测试集上展现卓越性能。表1展示了其零样本结果,性能显著优于其他模型。实际应用中,TimeGPT通过简洁快速的预测方式,提高了预测效率,降低了计算成本和实现复杂性,从而更具竞争力。表1呈现了TimeGPT的主要性能结果,使用零样本推断、rMAE和rRMSE测量,得分越低越好。最佳模型以粗体突出,第二佳模型以下划线突出,第三佳模型以虚线突出。
6.2 微调
微调是基础模型和基于transformer架构的关键步骤。基础模型通过预训练在大量数据上捕获通用特征,但需针对特定背景或领域进行调整。微调利用特定任务数据集调整模型参数,使其适应新任务要求并保持广泛理解,提高特定领域性能。由于transformer架构的灵活性和学习复杂模式的能力,微调特别有益。因此,微调是连接基础模型广泛能力和目标任务特性的桥梁。图5展示了TimeGPT在测试集上针对时间序列子集的微调步骤数与准确度提高的关系。
图5 对测试集的时间序列子集进行微调后的 TimeGPT 性能
6.3 时间比较
TimeGPT在零样本推断方面的GPU推断速度仅需0.6毫秒/系列,与简单季节性朴素推断相当。相比之下,传统统计方法和全局模型(如LGBM、LSTM和NHITS)速度较慢,每系列分别需要600毫秒和57毫秒。因此,TimeGPT的总速度远胜于其他方法。
7 讨论和未来的研究
现在预测这事儿挺复杂的,得处理数据、训练模型,还得选模型。但是呢,TimeGPT把这个过程简化了,省去了好多麻烦,还能做出顶级的表现。这就好像把高级车开到了平民家,对预测领域影响挺大的。基础模型就像是个引路人,改变了我们以前的做法。TimeGPT就是在时间序列这块儿引入了这个基础模型,给以后的发展铺平了路,可以说是这个时间序列领域的大事儿。不过,这事儿也不是完美的,还有一些限制和问题需要去解决。虽然TimeGPT表现得很好,但我们还是要关注那些限制和问题。
那么,未来的研究方向有哪些呢?首先,就是时间序列嵌入,就是把时间序列变成一种可以直接用的数据形式。另外,时间序列分类的基础模型,还有真正****多模态和多时态的基础模型,这些都可能是以后研究的热门方向。这些方向都有助于我们做出更强大、更通用的预测模型。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓