LLM Guardrails:构建安全 AI 应用程序的指南

了解如何实施 LLM 护栏,以开发安全、可靠且符合道德的 AI 应用程序。大型语言模型 (LLM) 需要护栏来确保 AI 应用中的交互安全合规。本博客探讨了 LLM 护栏如何充当过滤响应的保护措施,从而将 LLM 输出保持在可接受的范围内。

杰弗里·辛顿被誉为“人工智能教父”,最近获得了 2024 年诺贝尔物理学奖,他为人工智能做出了巨大贡献,主要是通过他在人工神经网络方面的工作。他的创新为人工智能在模式识别和深度学习方面的能力奠定了基础,而这两种能力推动了当今许多先进技术的发展。

然而,辛顿的故事不仅仅是关于技术成就,也关于他的道德立场。2023 年,他辞去了谷歌的职务,理由是担心人工智能的道德和社会风险,例如错误信息和工作流失。这一决定强调了采取措施确保负责任地开发和使用人工智能的紧迫性。

人工智能(尤其是LLM)能力的不断增强,带来了重大进步,但也引发了对其可能被滥用的担忧。为了解决这个问题,“ LLM 护栏”应运而生。这些机制旨在指导 LLM 行为,确保 LLM 响应遵守道德标准并安全地执行任务。LLM 护栏提供了防止有害输出、保护敏感信息和确保人工智能系统按照符合人类准则行事的框架。通过整合这些保障措施,数据科学家可以利用 LLM 的强大功能,同时最大限度地降低风险,这与 Hinton 呼吁更符合道德的人工智能实践的举措一致。让我们从深入了解 LLM 中的护栏开始。

LLM 护栏是什么?

LLM Guardrail 是万灵药,是生成式 AI 应用程序的隐形看门狗。LLM 需要实施护栏,作为一组协议或安全措施,以防止生成有害或令人反感的内容。

这些护栏充当响应的过滤器,将强大的语言模型保持在可接受的范围内,并防止它们偏离未知和潜在危险的领域。它们确保 LLM 保持在边界内,而不会违反任何合规规定。

考虑图 1。以了解护栏如何集成到基于 LLM 的应用程序中。该过程从用户发送消息(用户输入)开始。然后,该消息通过应用程序处理,提示语言模型生成响应。生成的输出(即来自 LLM 的响应)作为机器人的输出发送回。这个基本管道显示了直接的信息流,但缺乏实际、安全部署所必需的节制。

图 1:了解基于 LLM 的申请

图 2 介绍了四个干预层面的护栏:(1)输入栏、(2)检索栏、(3)生成栏和(4)输出栏。这些护栏通过在处理的不同阶段拦截文本来帮助调节对话。

图 2:实施 LLM 护栏

  • 输入栏 (1):第一道护栏检查初始用户消息。它根据预定义的标准过滤、修改或拒绝内容,以防止进一步处理有害输入。

  • 检索轨道 (2) :如果应用程序通过检索增强生成 (RAG)系统使用知识库,则此护轨可确保仅检索相关、安全的信息供 LLM 使用。

  • 生成轨道 (3):LLM 生成响应后,此护轨将评估内容以确定其是否符合质量和合规性标准。如果不符合,它可以拒绝输出、修改输出或重新生成新的响应。

  • 输出轨道 (4):在将响应发送给用户之前进行最终检查。它确保输出符合道德准则、用户期望和任何特定内容政策。

每个级别都允许应用程序评估和管理消息流,将其视为可以修改以增强安全性和控制力的文本字符串。通过这些干预点,Guardrails AI 有效地控制了对话式 AI 的行为,确保了更安全、更可靠的用户体验。现在,让我们探讨一下为什么 LLM Guardrails 对于确保安全、合乎道德和有效的 AI 交互至关重要。

LLM 中护栏的重要性:我们为什么需要它们?

可以将 LLM 视为过度热情的学生。他们接受过大量数据集的训练,因此有时他们可能会偏离剧本并提供超出预期的信息。它有时会“产生幻觉”,产生事实错误或上下文不合适的输出。例如,没有护栏的 LLM 可能会生成有害内容,推荐不正确或不安全的药物,甚至会使用冒犯性语言。这种意外行为可能会给用户带来重大风险,尤其是在医疗保健或金融等关键领域。这就是护栏变得必不可少的地方。

中的护栏的重要性")

LLM 护栏是监督和规范 LLM 行为的方法,确保其输出值得信赖、安全、准确且符合用户期望。护栏至关重要的原因如下:

1.确保安全可信

在医疗建议或法律咨询等高风险应用中,LLM 必须生成准确可靠的响应。护栏可以帮助过滤掉潜在的危险建议,并确保提供的任何指导都符合经过验证的信息和行业标准,从而最大限度地降低对用户造成伤害的风险。

2. 提高语境准确性

由于 LLM 接受过各种数据集的训练,因此有时很难保证响应与上下文相关,导致输出可能不相关或不合适。通过实施上下文护栏,AI 可以专注于当前主题,使交互更具相关性和实用性。这在基于 LLM 的客户服务应用中尤为重要,因为这些应用需要精确、针对具体情况的响应。

3. 预防有害输出

如果没有道德护栏,LLM可能会无意中产生带有偏见或冒犯性的语言,这反映了其训练数据的不完善。道德护栏有助于解决这一问题,它过滤或纠正可能延续刻板印象的输出,确保人工智能以尊重和公平的方式进行交流。

4. 提高质量和一致性

在专业环境中,语言和输出质量的一致性至关重要。LLM 护栏可以保持响应的标准,确保输出符合特定的语气或风格。这在内容生成、营销和自动化客户沟通中非常有用。

5. 适应不断变化的需求

自适应护栏允许 LLM 根据用户反馈或情境需求改变其行为。这种适应性确保 AI 实时进化,通过从过去的互动中学习并保持在安全参数范围内来改善用户体验。

6. 确保合规并降低法律风险

合规护栏可帮助 AI 系统遵守法律法规和公司政策,例如数据隐私法(例如 GDPR)或行业特定标准。这在受监管的行业中至关重要,因为不合规可能会导致严重的法律和财务后果。

实施 LLM 护栏可以防止有害输出、优化上下文、确保 AI 与 LLM 提示同步、提高整体质量和可靠性、调整学习并减轻偏见,并确保法规遵从性。但是,护栏有多种类型,每种类型都适用于特定用例。让我们探索各种类型,了解哪种护栏在不同场景下效果最佳。

LLM 护栏类型

针对特定用例设计了多个 LLM 防护措施,每个技术人员都应该注意:

  • 自适应护栏

  • 合规护栏

  • 上下文护栏

  • 道德护栏

  • 安全护栏

  • 输入和输出护栏

以下是不同类型的 LLM Guardrails 及其具体用途的概述:

1)自适应护栏

这些护栏会根据上下文和用户交互不断变化的需求进行动态调整。例如,它们可能会根据用户输入或对话中检测到的情绪来微调 LLM 的响应。自适应护栏旨在提供灵活性,同时保持控制,并进行调整以确保实时获得适当的输出。

2)合规护栏

合规护栏确保LLMs遵守法律、监管或组织准则。它们防止模型生成可能违反法律或内部政策的内容。这对于金融、医疗保健和法律等必须保持严格合规标准的行业尤为重要。

3)上下文护栏

这些护栏可帮助 LLM 根据对话或任务的具体背景生成相关且准确的响应。它们引导模型紧扣主题,避免偏离无关或不适当的领域,确保连贯性并与用户需求保持一致。

4)道德护栏

这些护栏旨在维护人工智能使用中的道德考量,防止产生有害或有偏见的结果。它们有助于确保人工智能在公平、尊重和包容的界限内运行,避免生成可能延续刻板印象、歧视或冒犯性语言的内容。

5)安全护栏

这些防护措施专注于保护敏感信息并防止机密数据泄露。它们可以过滤或屏蔽输入和输出中的私人信息,确保模型不会无意中暴露敏感细节或响应恶意提示以提取私人数据。

6)输入和输出护栏

这些防护措施控制着哪些内容可以输入到 LLM 中以及模型可以输出哪些内容。输入防护措施可能会过滤掉用户查询中的有害或不适当内容,而输出防护措施则确保生成的响应不包含有害、误导或敏感内容。它们共同帮助维护与 LLM 交互的完整性和安全性。

这些护栏对于实现负责任的人工智能使用至关重要,因为它建立了 LLM 可以在不同应用程序中安全且合乎道德地运行的界限。

AI 护栏技术

AI 护栏技术可确保 LLM 生成的文本安全、合乎道德且符合用户期望。以下是对实施护栏的不同技术的进一步介绍:

1.及时工程

它涉及精心设计输入提示来指导模型的行为。通过嵌入特定指令,提示可以减少 LLM 申请中出现不适当或有偏见的回应的可能性。

例如,要求模型“以专业和公正的语气解释这个主题”的提示可以帮助生成更可控的输出。在提示中包含上下文可以进一步引导 LLM 的响应朝着期望的结果发展。

2.内容过滤

该技术使用预定义的过滤器(例如关键字或模式)来防止模型生成有害或令人反感的输出。内容过滤可以屏蔽与敏感或有害主题相关的某些禁词。它通常用于检测亵渎、仇恨言论或有争议的话题的讨论。虽然内容过滤对于简单的情况很有效,但它可能会漏掉不包含确切关键字或模式的细微有害内容。


针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

3. 减轻偏见

它使用微调、数据增强和算法调整等技术来解决训练数据中固有的偏见。例如,可以平衡数据集以包含不同的观点并最大限度地减少偏差表示。使用道德准则微调 LLM也有助于减少有偏见的输出。然而,由于数据中编码的语言和社会价值观的复杂性,从 AI 应用程序中完全消除偏见是一项挑战。

4. 基于人类反馈的强化学习(RLHF)

该技术涉及使用人工反馈来训练模型,以根据质量、安全性和准确性对响应进行排名和改进。通过提供反馈循环,数据科学家可以构建更符合道德标准的自定义 LLM 模型,并完善他们对适当内容的理解。

5. 红队

红队测试涉及 AI 专家测试模型以发现漏洞或有害行为。它有助于识别实际部署过程中出现的风险,让开发人员能够加强防护措施。这种方法有助于发现潜在的误用案例,确保模型即使在边缘场景中也能按预期运行。

  1. 人为监督

当涉及高风险(例如法律或医疗建议)时,人工审核员会监督LLMs申请的回复,以确保准确性。这在关键领域提供了额外的安全保障,因为错误的信息可能会造成严重后果。

7.基于规则的字符串操作

该技术使用简单的基于规则的方法(例如正则表达式)来检测特定模式(例如电话号码、电子邮件地址)并过滤或修改内容。这些技术透明、确定且可解释,因此适合用于简单的任务。然而,它们可能难以应对微妙的语言变化或依赖于上下文的场景。

8. 基于LLM的衡量标准

人们可以利用 LLM 功能执行诸如使用困惑度检测异常或测量语义相似度等任务。例如,困惑度可以检测不连贯或乱码的输入,而相似度指标可以评估消息与预定义的敏感主题的匹配程度。这些方法需要访问模型概率,并且可能无法处理复杂的攻击。

9. LLM 评判方法

此方法使用 LLM 根据预定义标准对内容进行分类(例如,NSFW 内容的零样本分类)。NVIDIA NeMo 等工具拥有护栏配置,可以提示模型验证生成的文本是否可以安全输出。这种方法对于涉及理解复杂模式的细微任务非常有效。

10. 快速工程和思维链推理

提示工程通过将任务分解为更小的步骤来引导模型完成多步骤推理过程。思路链 (CoT) 提示可以通过构建提示来引出逐步推理,从而提高复杂任务的响应准确性。

以下是Lyzr AI 首席执行官 Siva Surendra撰写的一篇精彩文章,总结了实施 LLM Guardrails 的这些技术。

结合这些技术可以提供一种分层方法来确保 LLM 的安全性和可靠性,每种技术都有一组独特的优势和挑战。在下一节中,我们将探讨 NVIDIA、Microsoft、AWS 和 GitHub 等行业领导者对 LLM 护栏的具体实施。通过研究这些框架,我们将了解它们如何增强 AI 的可靠性和安全性,为负责任的 AI 创新奠定基础。

LLM护栏示例

随着人工智能继续以惊人的速度发展,优先考虑安全性和合规性已变得至关重要。护栏对于管理人工智能输出、减轻有害内容和维护道德标准至关重要。主要行业参与者已经推出了他们的护栏框架。让我们探索这些系统如何提高人工智能应用程序的可靠性、安全性和用户信任度,为负责任和创新的人工智能开发奠定基础。

1. NVIDIA LLM Guardrails- NeMo

NVIDIA 的 NeMo Guardrails是一款用户友好的开源工具包,适用于具有可编程护栏的可控且安全的 LLM 驱动应用程序。它有助于设置重要边界,以确保准确、适当且安全的 AI 输出。

NeMo Guardrails 提供各种类型的护栏,包括防止讨论不受欢迎话题的话题护栏、过滤有害语言同时确保准确响应的安全护栏,以及限制与受信任应用程序的连接的安全护栏。开发人员可以使用类似于Python的建模语言Colang轻松设置这些护栏,即使没有深入的机器学习知识的人也可以使用它。只需几行代码,任何软件开发人员都可以使用 NeMo Guardrails 增强其 AI 应用程序的安全性和可靠性。

表格:快速了解 NeMo Guardrails 的实现

描述

命令

1. 安装 NeMo 护栏

确保您的环境具有所需的 Python 版本和 C++ 编译器。

pip 安装 nemo-guardrails

2. 创建配置

在结构化配置文件夹中定义 LLM 和护栏类型。

文件夹结构:

配置/

–––––actions.py

````````````config.py

````````````config.yml

┓─â“rails.co

3. 定义护栏

指定护栏的类型:输入轨道、对话轨道、输出轨道。

示例(拒绝讨论药物问题):

导轨:

- 类型:输入

动作:拒绝

条件:“包含(‘药物’)”

4. 装载和使用护栏

加载配置并通过护栏与 LLM 交互。

python
从 nemoguardrails 导入 LLMRails,RailsConfig
config = RailsConfig.from_path("path/to/config")
rails = LLMRails(config)
finish = rails.generate(
messages = [{"role": "user", "content": "告诉我关于政治的事。"}]
)
print(completion)

5. 启动 Guardrails 服务器

运行护栏服务器以通过 HTTP API 访问配置。

nemoguardrails 服务器 --config 路径/to/configs --port 端口

NeMo Guardrails 支持五种类型的轨道:输入轨道通过拒绝或更改用户输入来管理用户输入,对话轨道引导对话流程并确定操作,检索轨道控制检索增强生成 (RAG) 场景中使用的数据,执行轨道处理自定义操作输入/输出,输出轨道修改或阻止 LLM 生成的响应。这些轨道确保安全准确的 AI 交互。

2. 微软大型语言模型LLM护栏

作为其 Azure AI 产品的一部分,微软引入了 LLM 防护措施(因此也称为 Azure LLM 防护措施),重点是增强 AI 应用程序的安全性、保障性和道德使用。主要功能包括:

  1. 即时盾牌

即时防护是一种实时防御机制,可在可疑输入到达模型之前检测并阻止它们。即时防护通过阻止即时注入攻击来保护敏感数据并确保系统的完整性。

  1. 接地检测

此功能可检测模型生成缺乏事实依据的输出情况,从而提高所生成内容的可靠性。

  1. 自动评估

Azure AI Studio 提供自动风险评估工具,评估生成式 AI 应用程序是否存在有害内容,并确保符合安全标准。

  1. 监控功能

开发人员可以利用监控工具来可视化用户与 LLM 的交互;跟踪被阻止的输入和输出以识别潜在滥用行为的趋势。

  1. 内容过滤器和黑名单

这些预先配置的安全措施允许开发人员管理可接受的内容类型并确保遵守组织政策。

将这些功能纳入您的 LLM 工作流程将增强任何大型语言模型的安全性和可靠性,增强信任和合规性。

3.AWS LLM 护栏

AWS LLM 护栏提供了一种结构化的方法来安全且合乎道德地管理 AI 交互。Amazon Bedrock 是Amazon Web Services (AWS)提供的一项完全托管的服务,它简化了生成式 AI 应用程序的创建。

Amazon Bedrock 提供可自定义的防护措施来管理与大型语言模型 (LLM) 的交互,确保输出符合负责任的 AI 政策和组织标准。这些安全功能允许组织过滤和阻止特定主题或内容,从而增强生成式 AI 应用程序的控制和完整性。Amazon bedrock 的主要功能包括可自定义的保护措施、拒绝的主题、内容过滤器、通过与 Amazon CloudWatch 集成进行监控和评估以及 PII 编辑。

4. Github 护栏

GuardRails 是 GitHub Marketplace 上提供的一款安全工具,可实时扫描存储库中的代码更改。GIthub的 LLM Guardrails可在拉取请求期间立即反馈安全漏洞,并为分支生成详细报告。GuardRails 将安全问题分为两类:发现和漏洞。

发现包括所有可能默认未启用或被视为误报的已识别问题,而漏洞则代表影响深远的安全问题。

它由大约 30 种不同的安全引擎提供支持,其中包括开源、商业和内部开发的工具;GuardRails 采用严格的管理以减少噪音。

只有最重要的规则才会被考虑用于漏洞,专家系统会进一步分析每个候选规则以最大限度地减少误报,确保用户只会收到真正的安全风险警报。

这种方法提供了可操作的见解,而不会让开发人员被不必要的警报所淹没。

当您探索了各种公司如何构建符合道德规范的 AI 应用程序时,我们希望这能激发您考虑将类似的护栏集成到您的AI 项目中。

别担心 - 您寻求的答案在下一节中,我们将指导您在 LLM 中实施有效的护栏,以获得更安全的 AI 体验。

如何在 LLM 中实施护栏?

实施护栏的结构化方法可确保您的 LLM 在定义的安全边界内运行,包括几个关键步骤;让我们将每个步骤分解为可管理的部分,以更彻底地了解每个组件:

  1. 定义 RAIL 规范

RAIL 是一种人类可读的、与语言无关的格式,旨在指定 LLM 输出的规则和纠正措施。创建 RAIL 规范,定义 LLM 输出的预期格式、数据类型和质量基准。此规范对于确保验证和执行与模型响应相关的规则至关重要。

  1. 初始化守卫对象

要开始使用护栏框架,只需根据您的 RAIL 规范初始化一个护栏对象即可。这仅意味着创建一个包装 LLM API 调用的 Python 对象,从而轻松执行您设置的规则。

  1. Guard 和 LLM API 调用集成

将防护与 LLM API 调用集成,以根据既定的防护来验证每个输入。此集成可确保所有生成的输出均符合您定义的规范,从而简化整个模型交互过程中规则的执行。

  1. 实施输入和输出验证

建立机制来验证用户输入和模型输出。这包括过滤有害内容、屏蔽不适当的主题,并确保生成的响应符合指定的质量标准。

  1. 配置策略

为了有效地管理内容生成,您可以轻松在护栏内定义特定策略。首先实施内容过滤器来阻止有害或不适当的回应,并建立拒绝主题以指定不应讨论的领域。

  1. 最后检查

设置过滤器来屏蔽或编辑个人身份信息 (PII),以保护用户隐私。最后,应结合上下文背景检查,以确保生成的响应相关且基于事实信息。

常见问题解答

1. LLM 的护栏是什么?

LLM 的护栏是一种安全机制,旨在控制和规范 AI 输出,确保语言模型生成适当、安全且合规的内容。它们涉及各个阶段的过滤器、规则和检查,以减轻有害语言的影响,防止未经授权的访问,并维护 AI 交互中的道德标准。

2. LLM 中的 4 种护栏类型是什么?

LLM 的四种护栏类型为:

  • 输入轨道管理用户输入以过滤不适当的内容。

  • 检索RAG 场景中使用的Rails 控制数据以获取上下文。

  • 铁路世代 (Generation Rails)负责监督输出生成是否符合道德规范。

  • 输出轨验证最终响应以确保准确性和安全性


读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值