一文读懂|DeepSeek新模型大揭秘,为何它能震动全球AI圈

本文关注DeepSeek-R1在技术上最重要的突破——用纯深度学习的方法让AI自发涌现出推理能力。这一研究可能会对模型推理训练后续的范式产生深刻影响。(头图来自《硅谷》)

和上次不同的是,这次推出的新模型DeepSeek-R1不仅成本低,更是在技术上有了大福提升。

而且,它还是一个开源模型。

这款新模型延续了其高性价比的优势,仅用十分之一的成本就达到了GPT-o1级别的表现。

所以,很多业内人士甚至喊出了“DeepSeek接班OpenAI”的口号。

比如,前Meta AI工作人员、知名AI论文推特作者Elvis就强调,DeepSeek-R1的论文堪称瑰宝,因为它探索了提升大语言模型推理能力的多种方法,并发现了其中更明确的涌现特性

另一位AI圈大V Yuchen Jin则认为,DeepSeek-R1论文中提出的,模型利用纯RL方法引导其自主学习和反思推理这一发现,意义非常重大。

英伟达GEAR Lab项目负责人Jim Fan在推特中也提到了,DeepSeek-R1用通过硬编码规则计算出的真实奖励,而避免使用任何 RL 容易破解的学习奖励模型。这使得模型产生了自我反思与探索行为的涌现。

Jim Fan 甚至认为,它们做了OpenAI本来应该做的事,开源。

那么问题来了,他们所提到的纯RL方法训练模型是指什么?

模型出现的“Aha Moment”,又凭什么能证明AI具有了涌现能力?

我们更想知道的是,DeepSeek-R1的这一重要创新对于AI领域未来的发展,究竟意味着什么?


用最简单的配方,

回归最纯粹的强化学习

在o1推出之后,推理强化成了业界最关注的方法。

一般来说,一个模型在训练过程中只会尝试一种固定训练方法来提升推理能力。

而DeepSeek团队在R1的训练过程中,直接一次性实验了三种截然不同的技术路径:直接强化学习训练(R1-Zero)、多阶段渐进训练(R1)和模型蒸馏,还都成功了。多阶段渐进训练方法和模型蒸馏都包含着很多创新意义元素,对行业有着重要影响。

其中最让人激动的,还是直接强化学习这个路径。因为DeepSeek-R1是首个证明这一方法有效的模型。

我们先来了解一下,训练AI的推理能力传统的方法通常是什么:一般是通过在SFT(监督微调)加入大量的思维链(COT)范例,用例证和复杂的如过程奖励模型(PRM)之类的复杂神经网络奖励模型,来让模型学会用思维链思考。

甚至会加入蒙特卡洛树搜索(MCTS),让模型在多种可能中搜索最好的可能。

传统的模型训练路径

但DeepSeek-R1-Zero选择了一条前所未有的路径“纯”强化学习路径,它完全抛开了预设的思维链模板(Chain of Thought)和监督式微调(SFT),仅依靠简单的奖惩信号来优化模型行为。

这就像让一个天才儿童在没有任何范例和指导的情况下,纯粹通过不断尝试和获得反馈来学习解题。

DeepSeek-R1-Zero 有的只是一套最简单的奖励系统,来激发AI的推理能力。

这个规则就两条:

1. 准确性奖励:准确性奖励模型评估响应是否正确。对了就加分,错了扣分。评价方法也很简单:例如,在具有确定性结果的数学问题中,模型需要以指定格式(如和间)提供最终答案;对于编程问题,可以使用编译器根据预定义的测试用例生成反馈。

2. 格式奖励:格式奖励模型强制要求模型将其思考过程置于和标签之间。没这么做就扣分,做了就加分。

为了准确观察模型在强化学习(RL)过程中的自然进展,DeepSeek甚至有意将系统提示词仅约束限制在这种结构格式上,来避免任何内容特定的偏见——例如强制让模型进行反思性推理或推广特定的问题解决策略。

R1 Zero的系统提示词

靠着这么一个简单的规则,让AI在GRPO(Group Relative Policy Optimization)的规则下自我采样+比较,自我提升。

GRPO的模式其实比较简单,通过组内样本的相对比较来计算策略梯度,有效降低了训练的不稳定性,同时提高了学习效率。

简单来说,你可以把它想象成老师出题,每道题让模型同时回答多次,然后用上面的奖惩规则给每个答案打分,根据追求高分、避免低分的逻辑更新模型。

这个流程大概是这样的:

输入问题 → 模型生成多个答案 → 规则系统评分 → GRPO计算相对优势 → 更新模型

这种直接训练方法带来了几个显著的优势。首先是训练效率的提升,整个过程可以在更短的时间内完成。其次是资源消耗的降低,由于省去了SFT和复杂的奖惩模型,计算资源的需求大幅减少。

更重要的是,这种方法真的让模型学会了思考,而且是以“顿悟”的方式学会的。


用自己的语言,在“顿悟”中学习

我们是怎么看出模型在这种非常“原始”的方法下,是真的学会了“思考”的呢?

论文记录了一个引人注目的案例:在处理一个涉及复杂数学表达式 √a - √(a + x) = x 的问题时,模型突然停下来说"Wait, wait. Wait. That’s an aha moment I can flag here"(等等、等等、这是个值得标记的啊哈时刻),随后重新审视了整个解题过程。这种类似人类顿悟的行为完全是自发产生的,而不是预先设定的。

这种顿悟往往是模型思维能力跃升的时刻。

因为根据DeepSeek的研究,模型的进步并非均匀渐进的。在强化学习过程中,响应长度会出现突然的显著增长,这些"跳跃点"往往伴随着解题策略的质变。这种模式酷似人类在长期思考后的突然顿悟,暗示着某种深层的认知突破。

在这种伴随着顿悟的能力提升下,R1-Zero在数学界享有盛誉的AIME竞赛中从最初的15.6%正确率一路攀升至71.0%的准确率。而让模型对同一问题进行多次尝试时,准确率甚至达到了86.7%。这不是简单的看过了就会做了——因为AIME的题目需要深度的数学直觉和创造性思维,而不是机械性的公式应用。模型基本必须能推理,才可能有这样的提升。

另一个模型确实通过这种方法学会了推理的另一个核心证据,是模型响应长度会根据问题的复杂度自然调节。这种自适应行为表明,它不是在简单地套用模板,而是真正理解了问题的难度,并相应地投入更多的"思考时间"。就像人类面对简单的加法和复杂的积分会自然调整思考时间一样,R1-Zero展现出了类似的智慧。

最有说服力的或许是模型展现出的迁移学习能力。在完全不同的编程竞赛平台Codeforces上,R1-Zero达到了超过96.3%人类选手的水平。这种跨域表现表明,模型不是在死记硬背特定领域的解题技巧,而是掌握了某种普适的推理能力。


一个聪明,但口齿不清的天才

尽管R1-Zero展现出了惊人的推理能力,但研究者们很快发现了一个严重的问题:它的思维过程往往难以被人类理解。

论文坦诚地指出,这个纯强化学习训练出来的模型存在"poor readability"(可读性差)和"language mixing"(语言混杂)的问题。

这个现象其实很好理解:R1-Zero完全通过奖惩信号来优化其行为,没有任何人类示范的"标准答案"作为参考。就像一个天才儿童自创了一套解题方法,虽然屡试不爽,但向别人解释时却语无伦次。它在解题过程中可能同时使用多种语言,或者发展出了某种特殊的表达方式,这些都让其推理过程难以被追踪和理解。

正是为了解决这个问题,研究团队开发了改进版本DeepSeek-R1。通过引入更传统的"cold-start data"(冷启动数据)和多阶段训练流程,R1不仅保持了强大的推理能力,还学会了用人类易懂的方式表达思维过程。这就像给那个天才儿童配了一个沟通教练,教会他如何清晰地表达自己的想法。

在这一调教下之后,DeepSeek-R1展现出了与OpenAI o1相当甚至在某些方面更优的性能。在MATH基准测试上,R1达到了77.5%的准确率,与o1的77.3%相近;在更具挑战性的AIME 2024上,R1的准确率达到71.3%,超过了o1的71.0%。在代码领域,R1在Codeforces评测中达到了2441分的水平,高于96.3%的人类参与者。

然而,DeepSeek-R1 Zero的潜力似乎更大。它在AIME 2024测试中使用多数投票机制时达到的86.7%准确率——这个成绩甚至超过了OpenAI的o1-0912。这种"多次尝试会变得更准确"的特征,暗示R1-Zero可能掌握了某种基础的推理框架,而不是简单地记忆解题模式。

论文数据显示,从MATH-500到AIME,再到GSM8K,模型表现出稳定的跨域性能,特别是在需要创造性思维的复杂问题上。这种广谱性能提示R1-Zero可能确实培养出了某种基础的推理能力,这与传统的特定任务优化模型形成鲜明对比。

所以,虽然口齿不清,但也许DeepSeek-R1-Zero才是真正理解了推理的“天才”。

纯粹强化学习,

也许才是通向AGI的意外捷径

之所以DeepSeek-R1的发布让圈内人的焦点都投向了纯强化学习方法,因为它完全可以说得上是打开了AI 进化的一条新路径。

R1-Zero——这个完全通过强化学习训练出来的AI模型,展现出了令人惊讶的通用推理能力。它不仅在数学竞赛中取得了惊人成绩。

更重要的是,R1-Zero不仅是在模仿思考,而是真正发展出了某种形式的推理能力。

因为在过往的训练方法中,尤其在监督微调中使用训练好的神经网络来评估质量的话,模型可能学会触发奖励模型的特定模式,生成对奖励模型"口味"的内容,而不是真正提升推理能力。换句话说,AI系统找到了获得高奖励但实际上违背训练目标的投机取巧方式。这就是我们常说的奖励欺骗(reward hacking)。但R1-Zero用极简的奖励规则基本避免了奖励欺骗的可能性——规则太简单了,没有什么“口味”可以去模仿。模型在这个情况下发展出的推理能力更可信,也更自然

这个发现可能会改变我们对机器学习的认识:传统的AI训练方法可能一直在重复一个根本性的错误,我们太专注于让AI模仿人类的思维方式了,业界需要重新思考监督学习在AI发展中的角色。通过纯粹的强化学习,AI系统似乎能够发展出更原生的问题解决能力,而不是被限制在预设的解决方案框架内。

虽然R1-Zero在输出可读性上存在明显缺陷,但这个"缺陷"本身可能恰恰印证了其思维方式的独特性。就像一个天才儿童发明了自己的解题方法,却难以用常规语言解释一样。这提示我们:真正的通用人工智能可能需要完全不同于人类的认知方式。

这才是真正的强化学习。就像著名教育家皮亚杰的理论:真正的理解来自于主动建构,而不是被动接受。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

### YOLOv8 网络结构详解 #### 1. 配置文件解析 YOLOv8 的配置通过 YAML 文件定义,此文件不仅规定了模型架构参数还包含了训练超参等内容。这些设置对于构建和调整模型至关重要[^1]。 #### 2. Backbone: 改进型 CSPDarknet 作为特征提取的基础部分,YOLOv8采用的是基于CSP(Cross Stage Partial Network)设计思路优化后的 Darknet 架构,该版本继承并增强了之前版本的优点,在保持计算效率的同时提升了检测精度[^2]。 ##### 2.1 Conv 层 卷积操作是深度学习视觉任务中的核心组件之一。在YOLOv8里,Conv层负责执行标准的二维空间滤波器应用过程来捕捉图像局部模式特性。 ```python import torch.nn as nn class Conv(nn.Module): def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): super().__init__() self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) self.bn = nn.BatchNorm2d(c2) self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) ``` ##### 2.2 C3 与 C2f 结合模块 为了进一步提升性能,C3(即BottleneckCSP)被引入用来替代传统的Residual Block;而C2f则是对后者的一种变体形式,两者共同作用于加深网络表达能力而不显著增加运算负担上有着出色表现。 ##### 2.3 SPPF(Spatial Pyramid Pooling - Fast) SPPF是一种高效的多尺度融合机制,它能够有效增强模型的感受野范围从而更好地处理不同小的目标对象识别问题。 ##### 2.4 上采样(Upsample) Upsample用于实现高分辨率特征映射重建工作,这对于最终输出预测框位置具有重要意义。通常情况下会配合最近邻插值法完成这一过程。 ##### 2.5 Detect 层 Detect层承担着将前面各阶段所学到的信息汇总起来形成具体类别标签及边界框坐标的重任。其内部实现了锚点设定、损失函数计算等功能逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值