应用回归分析(2):一元线性回归_回归的残差是否是独立同分布的随机变量

本文探讨了统计学中的关键概念,如无偏性、方差、协方差及其在回归分析中的应用,包括线性无偏估计、T检验、F检验和ANOVA。同时涉及了相关系数、决定系数、残差分析以及SPSS中的数据分析方法,以及回归预测在实际问题中的使用。
摘要由CSDN通过智能技术生成

(2)无偏性

(3)方差

(4)\beta_0,\beta_1协方差

!!!结论:

1、由方差可以得到的结论:x的取值尽量分散而且n尽量较大,这样估计值的稳定性会好

2、由协方差的式子可知:\overline{x}=0时,\beta_0,\beta_1不相关

3、高斯-马尔柯夫条件:E(\varepsilon _i) = 0;var(\varepsilon _i)=\delta ^2;cov(\varepsilon_i, \varepsilon _j) = 0。在此条件下可以证明出:\hat{\beta_0},\hat{\beta_1}分别时\beta_0,\beta_1的最佳线性无偏估计(BLUE),也称为最小方差线性无偏估计。

4、对于固定的x_0来说,\hat{y_0}=\hat{\beta_0}+\hat{\beta_1}x_0也是y_1,y_2,....,y_n的线性组合,且\hat{y_0}\sim N(\beta_0+\beta_1x_0,(\frac{1}{n}+\frac{(x_0-\overline{x})^2}{L_{xx}})\delta ^2),由此可见\widehat{y_0}E(y_0)的无偏估计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值