基于BiLSTM - Attention的锂电池剩余寿命预测

基于BiLSTM - Attention的锂电池剩余寿命预测

摘要

随着科技的飞速发展,锂电池在电子设备、新能源汽车等诸多领域得到了广泛应用。准确预测锂电池的剩余寿命,对于保障设备性能、安全性以及降低维护成本具有至关重要的意义。传统的锂电池剩余寿命预测方法存在一定局限性,而深度学习模型在该领域的应用逐渐兴起。本文提出基于BiLSTM - Attention模型的锂电池剩余寿命预测方法。BiLSTM的双向结构能够有效捕捉序列数据中的前后依赖关系,Attention机制则可聚焦于关键信息。两者结合,显著提升了预测精度。通过实验验证,该模型在预测准确率与稳定性方面展现出明显优势,为锂电池健康管理技术的发展提供了有力支持。

关键词

锂电池;剩余寿命预测;BiLSTM;Attention机制;深度学习

Abstract

With the rapid development of science and technology, lithium batteries have been widely used in many fields such as electronic devices and new energy vehicles. Accurately predicting the remaining life of lithium batte

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值