大语言模型LLM原理篇

大模型席卷全球,彷佛得模型者得天下。对于IT行业来说,以后可能没有各种软件了,只有各种各样的智体(Agent)调用各种各样的API。在这种大势下,笔者也阅读了很多大模型相关的资料,和很多新手一样,开始脑子里都是一团乱麻,随着相关文章越读越多,再进行内容梳理,终于理清了一条清晰的脉络。

笔者写原理篇时心情是有些惴惴不安的,因为毕竟对大模型的研究有限,缺乏深度。但是,还是觉得有必要记录一下学习理解心得,权当自己的学习笔记吧!如果本文有疏漏,敬请留言指正,勿喷,谢谢!

大模型架构

要说清楚大模型的原理,必须先大致了解大模型的架构。在上一篇文章中的分类中提高,大模型基本都是采用的Transformer架构,而该架构整体可以分为四个部分:

  • 输入(Input):对输入的内容进行向量化,计算机只能对数字进行计算和转换;
  • 编码器(Encoders):通过自注意力机制,将输入内容Token之间的隐含关联信息以向量的形式进行表征;
  • 解码器(Decoders):循环迭代预测下一个元素出现的概率,将本轮预测结果作为输入,进行下一轮预测。
  • 输出(Output):将预测结果进行向量化,最终得到一个矩阵。

Transformer架构图如下:

大模型原理

向量与矩阵

在正式讲解大模型原理之前,有两个数学概念需要先了解一下。

  • 向量

向量表示形式类似于数组,但是值只能为数字,如:[1,2,3,4]。

向量用来通过一组特征来描述一个事物。比如苹果可以描述为:一种圆形的,果皮上有纹路的,味道酸甜的水果。用向量则可以表示为:[0, 1, 3, 4],其中0表示形状值-圆形,1表示果皮是否有纹路-有,3表示口味值-酸甜,4表示物体品类-水果。

同理,用户输入文本中的每个词也都可以用向量表示。

  • 矩阵

矩阵类似多维数组,但是值只能为数字。多个同维度向量可以组成矩阵,向量是一种特殊的矩阵。

原理阐述

通过上述对Transformer架构的描述,可以得出一个大模型的大致原理,分为两个阶段:

(1)模型训练生成阶段 通过将海量数据输入到Transformer系统中进行训练计算,最终输出一个矩阵W,这就是训练的结果 —— (大)模型。是否为大模型,需要根据参数量和数据量来判断,这两个因素也决定了模型矩阵W的维度大小。

(2)模型应用进化阶段 将用户输入的信息转化为向量X,将向量X与模型W矩阵进行计算,得到一个向量Y,再将Y反向量化为用户能看懂的信息(比如:文本)。当然,在实际的应用过程中,模型会随着用户的使用交流,得到进化,本质上是矩阵W的某些数值会发生调整。

下图是笔者理解的大模型的训练和使用原理图:

微信截图_20240509162956.png

上述原理阐述中有一个比较关键的问题需要弄清楚:文本如何转化为向量?

  1. 先将输入文本切换为词元Token;
  2. 然后用向量对单个Token进行表示;
  3. 再将词元在文本中的位置信息表示为向量;
  4. 将Token本身的向量与位置向量相加,则得到了该Token的表征向量。 一个文本输入最终被转为化一个向量矩阵,但是在推理过程中,仍是对一个Token进行推理的(即与一个向量进行运算),更详细的词向量化原理可以参考文末引用的文章。以下是一个词向量化示意图:

v2-7dd39c44b0ae45d31a3ae7f39d3f883f_r.png

简单总结

  1. 所有喂给大模型的数据,都是需要先进行词向量化的,计算机只能通过数字计算来实现推理或思考;
  2. 大模型本质上是一个维度非常巨大的矩阵;
  3. 模型训练和微调本质上是调整模型矩阵的值;
  4. 大模型回答用户问题,实质上是先将用户输入向量化之后,再与模型矩阵进行运算得到值最优的向量值,再将该向量值转为用户可以理解的信息返回给用户。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值