最近过年走亲戚,总要参与一把欢乐斗地主或者掼蛋。我技术一般,可谓是被家里的亲戚虐了个遍。于是,我突发奇想,能不能让AI来打斗地主,看看会发生什么有意思的事。
由于斗地主涉及到逻辑的推理,因此我选择了使用比较多的三个推理大模型,来参与斗地主游戏,参赛选手如下:
1号选手:
DeepSeek R1模型
2号选手:
Kimi k1.5长思考模型
3号选手:
ChatGPT o3-mini模型
由于使用AI进行游戏可能会破坏游戏平衡,为了营造大众良好的游戏环境,我选择了自己构建一个斗地主平台。
这里感谢onestraw在GitHub中提供的代码
https://github.com/onestraw/doudizhu
此项目是一个Python实现的斗地主引擎,我在此项目的基础上,构建了一个斗地主的应用,实现发牌、叫地主、轮流出牌的操作。
1
游戏流程
叫地主
运行程序,程序自动发牌,并预留出来了地主牌
初始手牌如下:
玩家1 DeepSeek [ 2 ♦ ], [ A ♣ ], [ K ♠ ], [ K ♣ ], [ J ♦ ], [ J ♣ ], [ 10 ♠ ], [ 10 ♣ ], [ 9 ❤ ], [ 8 ♣ ], [ 7 ♦ ], [ 7 ♠ ], [ 7 ♣ ], [ 5 ❤ ], [ 4 ♦ ], [ 3 ♠ ], [ 3 ♦ ]
玩家2 Kimi [ 2 ♠ ], [ A ♦ ], [ A ♠ ], [ K ❤ ], [ Q ♣ ], [ Q ♦ ], [ J ❤ ], [ 9 ♣ ], [ 9 ♠ ], [ 8 ♠ ], [ 7 ❤ ], [ 6 ♦ ], [ 6 ♣ ], [ 5 ♠ ], [ 4 ♠ ], [ 3 ♣ ], [ 3 ❤ ]
玩家3 ChatGPT o3 mini [ 大王 ], [ 小王 ], [ 2 ❤ ], [ 2 ♣ ], [ A ❤ ], [ K ♦ ], [ Q ❤ ], [ J ♠ ], [ 10 ❤ ], [ 10 ♦ ], [ 9 ♦ ], [ 8 ♦ ], [ 8 ❤ ], [ 6 ❤ ], [ 6 ♠ ], [ 5 ♣ ], [ 4 ♣ ]
地主牌 [ Q ♠ ], [ 5 ♦ ], [ 4 ❤ ]
首先随机选择一名玩家叫地主,我们将当前的手牌和地主牌发送给AI,让AI来决定是否应该叫地主。
程序随机选择了DeepSeek叫地主,我们将手牌和地主牌发送给DeepSeek
DeepSeek在经过一系列分析后,选择了叫地主,原因是:
-
Q♠可补全8-Q顺子(8♣、9❤、10♠、J♦、Q♠),一次性解决5张中段单牌。
-
5♦和4❤能将原有单牌5❤、4♦升级为对5和对4,优化牌型结构。
开始对局
DeepSeek出牌
地主先出牌,所以DeepSeek先出,我们将DeepSeek当前剩余的手牌与当前的对局情况发送给DeepSeek。
DeepSeek又对牌局进行了分析,最终出牌:
顺子:[7♦]-[8♣]-[9❤]-[10♠]-[J♦]
出牌的依据有三个:
-
高效减牌:通过5张顺子(7到J)一次性消耗5张牌,将手牌从20张降至15张,加速牌局进程。
-
结构优化:
-
保留[K♠][K♣]和[J♣][10♣]等高位对子,维持对子控制权。
-
剩余三张7([7♠][7♣][7♦])仍可组成三带一或拆分对子,保持灵活性。
- 压制测试:
-
7-J顺子需对手用8-Q或更大的顺子压制,而地主手中有Q和K,能限制农民顺子发展空间。
-
若农民无法压制,后续可通过对子/三带持续输出,利用**[2♦][A♣]**收尾。
Kimi出牌
接下来轮到Kimi出牌:
kimi在一顿输出后,竟然选择了单出一张黑桃2。
我仔细分析了kimi的推理过程,发现Kimi已经推理出“无法使用顺子来压制地主的出牌”,所以应当“不要”,而kimi却话锋一转继续选择考虑其它牌型。
于是我跟Kimi重申,应当依据上一位玩家的出牌做判断。
这次Kimi做出了正确的回答,选择“不要” ,并且表达了不甘心,只能寄希望于ChatGPT o3mini。
ChatGPT o3-mini出牌
接下来轮到ChatGPT出牌。
GPT直接选择出【大王】…
GPT明明可以选择[ 9 ♦ ][ 10 ♦ ][ J ♠ ][ Q ❤ ][ K ♦ ]来接过牌,但GPT直接选择了出【大王】…
通过这个例子,可以发现,AI大模型并不是万能的,它们似乎还没有真正的学会如何推理,如何理解人类世界中的复杂规则。
实际上,让AI参与棋牌类游戏并非完全不可行(许多棋牌类AI已超越人类),但这些AI模型往往是针对某一特定游戏设计的。但要让通用大模型来玩棋牌类游戏,似乎还有很大的困难。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓