MCP(模型上下文协议)深度解析:一篇文章彻底理解

在大型语言模型(LLM)应用中,MCP(模型上下文协议,Model Context Protocol)是优化模型与上下文交互的核心机制,旨在解决长对话、复杂任务和多轮交互中的上下文管理难题。

一、MCP(模型上下文协议)

MCP(Model Context Protocol,模型上下文协议)是什么MCP(模型上下文协议)是由Anthropic公司于2024年11月底开源发布的一种开放标准协议。

MCP协议旨在实现大型语言模型(LLM)与外部数据源和工具之间的无缝集成,通过提供标准化的接口,使AI应用程序能够安全、可控地与本地或远程资源进行交互。

MCP协议遵循客户端-服务器架构,其核心组成部分包括:

  1. MCP主机(MCP Hosts):发起请求的AI应用程序,如聊天机器人、AI驱动的IDE等。
  2. MCP客户端(MCP Clients):在主机程序内部,与MCP服务器保持1:1的连接。
  3. MCP服务器(MCP Servers):为MCP客户端提供上下文、工具和提示信息。每个MCP服务器都专精于一类工作,如读写浏览器、读写本地文件、操作Git仓库等。

What is Model Context Protocol (MCP)? How it simplifies AI integrations  compared to APIs | AI Agents That Work

MCP为什么是模型上下文协议?MCP旨在解决大模型在处理长对话、多轮交互时面临的上下文长度限制导致的信息丢失问题。

MCP采用分层注意力机制,包括局部注意力处理当前窗口交互,全局注意力存储长期关键信息,并通过上下文压缩自动生成语义摘要和构建实体-关系图谱来结构化存储对话内容。

🔗What is Model Context Protocol? (MCP) Architecture Overview | by Tahir |  Mar, 2025 | Medium

二、Function Calling、Agent

MCP和Function Calling的区别是什么?MCP和Function Calling在大语言模型(LLM)与外部工具或数据源交互方面各有优势。

MCP作为一种开放标准协议,提供了统一的接口和流程,支持工具发现、调用执行、统一接口、双向通信和上下文管理,适用于复杂场景下的多工具协调与上下文管理。

而Function Calling则作为模型内部的功能扩展,是LLM的一种能力,允许模型根据用户输入生成结构化的函数调用指令,从而与外部工具或API交互。Function Calling能够快速实现简单场景下的函数调用任务。

MCP如何与Agent进行结合?Agent作为一个MCP Client(客户端),通过MCP协议与MCP Server(服务器)进行通信。

MCP Server(服务器)负责提供多种外部工具和服务,如数据库查询、API调用、数据抓取等多种外部工具和服务。MCP支持动态工具发现机制,使Agent能够在运行时灵活获取可用的工具列表。通过为Agent提供统一的接口标准,MCP使得Agent能够根据任务需求,轻松调用不同的工具和服务,从而实现与外部工具和服务的无缝集成。当Agent需要执行特定任务时,它只需通过MCP协议向MCP Server发送请求,即可调用相应的工具或服务来完成任务。 

 

 

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值