字节大模型一面:“大模型为什么有时候会重复?”

问题

大模型为什么有时候会重复?

答案

大模型有时候会输出重复的内容。有的是段落间的重复,有时候甚至是字符级别的重复。

关于为什么会重复目前也有很多说法,下面是一些常见的观点:

大模型有点像是在做成语接龙

《A Theoretical Analysis of the Repetition Problem in Text Generation》 这篇论文是比较早研究生成模型重复问题的。论文中对重复概率进行了建模,得出的结论是关于重复问题是存在理论上的上界的。虽然可以通过很多方法降低这个上界,但是还是有几率发生。

最终作者认为,重复问题是由于我们语言本身的特性所导致的。一个主要原因是存在太多单词以高概率预测同一个单词。因此,很容易回到那个单词并形成重复,这个被定义为 high inflow 问题。

这里举一个具体的例子可能更好理解,虽然并不完全一样,那就是成语接龙。当我们进行成语接龙的时候,通过最后一个字要预测出以这个字开头的一个成语,但是成语本来就不多,所以很容易就循环上了。

对于大模型来说,有些词作为下一个词出现的概率就是更高,所以也就容易陷入成语接龙那样的循环。

归纳头(induction heads)

Anthropic 的工作人员对一个迷你的 transformers 进行了研究,建模了一个数学框架来解释 transformer 是如何工作的。其中一个发现就是 Transformer 存在归纳头(induction heads)。简单来说,induction heads 就是复读机,如果 transformer 在处理的序列中存在 AB…A 这样的 pattern,那就会把 B 输出来。

图片

 

上图来自论文《Induction Heads as an Essential Mechanism for Pattern Matching in In-context Learning》,该论文表示 attention 会发现后面的 vintage 和前面的 vintage cars 匹配上了,就提高了 cars 的生成概率。而且通过一些消融实验证明了,当人工干预归纳头的 attention 计算方式时,In-context Learning 的能力确实下降了。

在论文 《In-context Learning and Induction Heads》中则认为归纳头的工作机制为: [A*][B*] … [A] → [B] , where A* ≈ A and B* ≈ B are similar in some space。 也就是归纳头在复读的时候并不需要严格的匹配,只需要相似即可。

这种重复的确实提高了 In-context Learning 的能力,但是不可避免的就会出现重复问题。

self reinforcement

如果说 induction heads 带来了重复问题,那么重复的概率分布是怎么样的呢? 很遗憾,经过研究发现,重复的问题存在 self reinforcement 的现象。

在很多篇论文中,都发现了大模型存在 self reinforcement 的问题。比如 《The Curious Case Of Neural Text Degeneration》《Learning to Break the Loop: Analyzing and Mitigating Repetitions for Neural Text Generation》, 《Understanding In-Context Learning From Repetitions》。

self reinforcement 就是重复 token 的次数越多,重复 token 出现的概率就越大。而且重复的概率随着两个重复 token 距离的缩短还会增大。

图片

所以 LLM 的重复问题就如同海水,越喝越渴。

— END —

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K(数据来源:BOSS直聘报告)

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值