从逻辑的角度看待 Agent
作为现代 AI Agent 最重要工作流背后,实在尝试找到一种逻辑, 我们今天就从逻辑学的角度来看看。 关于“Agent”的概念主要与行动逻辑(Action Logic)、意图逻辑(Intention Logic)、以及代理逻辑(Agent Logic)等领域相关。这些学说关注 Agent 如何基于逻辑规则做出决策、采取行动以及与环境互动,并有一些经典的理论、名人和著作支持这些视角。
亚瑟·普里奥里(Arthur Prior)的行动逻辑(Action Logic)
-
核心思想:
-
行动逻辑探讨行为的形式化表示,关注 Agent 如何选择和执行行动,以及行动的因果关系。
-
它研究行动的条件(preconditions)、后果(effects)和逻辑推理模型。
-
亚瑟·普里奥里(Arthur Prior):
-
通过时态逻辑(Temporal Logic)对行动进行建模,提供了一种分析行动时间与过程的框架。
-
亚瑟·普里奥里的著作《Past, Present and Future》 探讨了如何通过逻辑工具描述行动的时间维度,例如“Agent 在 t 时刻采取的行动导致了 t+1 的结果”。
-
在机器人学中,行动逻辑被用来编写逻辑规则,比如:
-
如果传感器检测到障碍物(条件),机器人必须停止移动(行动)。
迈克尔·布拉特曼(Michael Bratman)的意图逻辑(Intention Logic)
-
核心思想:
-
意图逻辑进一步探讨 Agent 的意图、信念和目标之间的关系,解释为什么 Agent 采取某种行动。
-
意图逻辑建立在**信念-愿望-意图模型(Belief-Desire-Intention, BDI)**之上,认为 Agent 的行动是其信念、愿望和意图综合作用的结果。
-
迈克尔·布拉特曼(Michael Bratman):
-
提出局部意图逻辑,用于建模 Agent 如何根据其知识和意图规划行动。
-
迈克尔·布拉特曼:《Intentions, Plans, and Practical Reason》 系统探讨了 Agent 的计划与意图如何协同作用,形成高效的行动决策。
-
提出 BDI 模型,探讨人类意图在行动中的作用。
-
约翰·麦卡锡(John McCarthy):
-
智能助理(如 Siri)通过意图逻辑理解用户的命令:
-
用户信念:希望找到最近的餐厅。
-
助理意图:基于用户输入规划行动,如查找餐厅、计算距离。
约翰·麦卡锡(John McCarthy)&约德·卡尔(Yoav Shoham)的代理逻辑(Agent Logic)
-
核心思想:
-
代理逻辑专注于多智能体系统中的交互,分析 Agent 如何协作、竞争,以及如何通过逻辑建模其行为。
-
它引入了自治性和社会性的维度,讨论 Agent 如何根据环境和其他 Agent 的行为调整自身行动。
-
约翰·麦卡锡(John McCarthy):
-
提出了状况演算(Situation Calculus),描述 Agent 在复杂环境中的行动过程。John McCarthy:《Situations, Actions, and Causal Laws》 描述了如何用逻辑工具表达 Agent 在动态环境中的行动决策。
-
约德·卡尔(Yoav Shoham):
-
通过逻辑编程发展了智能 Agent 的理论,强调了规则和条件在 Agent 设计中的作用。Yoav Shoham:《Artificial Intelligence Techniques in Prolog》 提供了如何使用逻辑推理构建自主 Agent 的具体方法。
-
多智能体游戏中的策略推理:
-
每个 Agent 根据对手的行为调整策略,同时维护自己的目标(如博弈论中的对策设计)。
伦理学中的逻辑 Agent
-
核心思想:
-
探讨 Agent 在伦理情境中的行为逻辑,分析如何通过逻辑模型让 Agent 遵守伦理规范。
-
重点放在道德约束和后果评估。
-
代表人物:
-
艾萨克·阿西莫夫(Isaac Asimov)(尽管主要是科幻作家)提出的机器人三定律本质上是基于伦理逻辑对 Agent 行为的规范化描述,描述了如何通过伦理逻辑让机器人 Agent 在人类环境中行动。
-
拉尔斯·汉森(Lars Hansen)开发了伦理逻辑模型,研究 Agent 在复杂伦理环境中的行为选择。探讨了伦理约束如何影响 Agent 的逻辑推理。
-
自动驾驶汽车的伦理决策:
-
在交通事故无法避免时,Agent 如何通过逻辑模型选择伤害最小化的行为。
逻辑学的视角使 Agent 概念不仅限于简单的行动者,而是扩展为一个能够感知、决策和协作的复杂系统。
经过深入探讨哲学的多个发展阶段,我们可以发现,哲学中众多分支和领域的核心理念与当今 AI Agent 的思想密切相关。为了使这些复杂的概念更加通俗易懂,我整理并总结了哲学不同分支和理论对 Agent 概念的讨论及其范围。
从哲学到逻辑学的演进逻辑
古希腊哲学起源:
- 苏格拉底、柏拉图和亚里士多德对“行动者”的道德性、理性和目的性探讨奠定了 Agent 概念的哲学基础。
- 他们的思想提供了 Agent 的核心特征:自主性、理性和目的性。
逻辑学的形式化发展:
- 行动逻辑通过时态建模 Agent 的行动次序。
- 意图逻辑分析 Agent 如何基于信念与意图规划行动。
- 代理逻辑扩展到多智能体系统,研究协作与竞争。
- 伦理逻辑则确保 Agent 的行为符合道德规则。
现代应用:
- Agent 的逻辑形式在人工智能、博弈论、机器人学和伦理 AI 中得到广泛应用,将哲学的抽象思考转化为实际的工程与技术框架。
Agent 的本质是什么?
无论是人、动物还是机器,Agent 的本质就是:
- 感知环境(知道周围发生了什么)。
- 做出决策(根据情况决定要怎么做)。
- 采取行动(实际去做事情)。
有点像一个独立的“小帮手”,能自己搞定任务,甚至替你省事儿。
用比喻来理解
想象你是一个老板,Agent 就是你请来的员工或助手:
- 你告诉他要做什么,他去完成任务。
- 他根据情况灵活调整行动,比如天气不好,他可能会改路线送货。
Agent 不一定是“人”,它也可以是机器人、软件,甚至是你养的狗——只要它能帮你办事,自己决定怎么做,就算是一个 Agent。
Agent = 能感知、能决策、能行动的“执行者”。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
