向吴恩达学人工智能转型:一份企业实战指南

一、为何聚焦吴恩达的AI转型方法论?

吴恩达是人工智能领域的标杆人物,他主导创立了谷歌大脑、推进百度大脑,并通过在线教育平台Coursera和Deeplearning.ai推动全球AI普及。2018年发布的《AI Transformation Playbook》(AI转型手册)浓缩了他多年实战经验,为企业提供了一套完整的AI转型框架

我觉得这本手册常读常新,里面提到的“AI转型五步法”和 “AI 落地常见坑点”,和这两年组织在落地人工智能时遇到的问题很契合。所以,我们不妨来一次人工智能 “考古”,向吴恩达学习如何实现人工智能转型。

二、人工智能转型的组织问题

《AI Transformation Playbook》中提出的五步法,每一步都精准对应着企业组织内部的关键问题。大家不妨对照思考一下,自己所在的企业是否也存在类似的疑惑:

  1. 如何才能在组织内部建立起大家对人工智能项目的信心,让众人相信其切实可行呢?

  2. 人工智能团队在公司的架构中该如何合理设置?它与其他部门之间又该构建怎样的协作关系?

  3. 怎样才能让全体员工都对人工智能有基本了解,并掌握必备的相关技能?

  4. 如何借助人工智能提升公司的核心竞争力,进一步强化公司战略布局?

  5. 怎样持续获取公司内外部的各类资源,为AI项目的推进提供充足保障?

三、转型五步法:从「小胜利」迈向「大生态」

1. 试点项目:以「快速见效」赢得信任

许多企业在AI转型的起跑线上就摔倒了,常见的错误便是选择了那些“看似重要却技术不可行”的项目。回顾吴恩达在谷歌大脑时期,他优先选择优化语音识别项目,而非直接挑战广告系统。这是因为语音识别技术在当时更为成熟,且能在短短6个月内见到显著成效。这种策略背后蕴含着深刻的逻辑:通过短期内取得的胜利,为后续长期的发展换取更多资源与支持。

  • 关键原则
    • 技术可行性>商业价值(初期)
    • 跨部门协作>单兵作战
    • 数据闭环验证>盲目试错

2. 团队建设:从「外包依赖」到「自有火种」

从长远发展来看,企业不能一直依赖外包团队,必须打造自己的内部AI团队。这需要企业高管给予大力支持,设立集中化的AI部门,比如由CTO、CAIO等领导。这个核心团队肩负着多重重要职责:负责跨部门项目的推进,打破部门之间的壁垒;建设统一的数据平台,为AI项目提供坚实的数据基础;制定科学合理的人才招聘标准,吸引和选拔优秀的AI人才。吴恩达曾指出,就如同互联网时代设立CIO一样,AI时代也需要这样一个核心团队,成为推动全公司转型的关键力量。

3. 分层培训:消除「AI文盲」

为了让企业全体员工都能跟上AI转型的步伐,分层培训至关重要:

  • 高管(4小时):高管们主要需要了解AI的潜在价值,以及AI对公司战略可能产生的深远影响,从而在宏观层面做出正确决策。
  • 部门负责人(12小时):部门负责人要掌握AI项目的管理方法和资源分配技巧,确保项目在部门内顺利推进。
  • 工程师(100小时):工程师则需重点学习深度学习和模型开发技能,结合在线资源(如Coursera)和专家指导,提升学习效率,快速掌握前沿技术。

4. 战略聚焦:数据驱动的「护城河」

  • 聚焦垂直领域:企业应聚焦自身所在的垂直领域,建立与之匹配的竞争优势。
  • 数据战略:通过精准的数据收集、分析和应用,不断提升自身在该领域的竞争力,加速建立稳固的战略地位。

  • 正循环:努力构建“Virtuous circle of AI”正反馈循环,即便起点较小,只要在关键指标上比竞争对手略胜一筹,就能逐步形成良性循环,不断扩大优势。

5. 内外叙事:从「技术黑箱」到「价值共识」

  • 内部沟通:打破公司内部各部门之间的隔阂,促进跨职能合作。让不同部门的员工都能理解AI项目的目标和进展,形成协同效应。
  • 外部展示:积极向投资者和客户展示AI成果,增强他们对公司的信心。通过清晰的价值阐述,让外界看到AI为公司带来的实际效益和发展潜力。

四、转型要点提炼

结合实践,给大家整理出转型过程中的要点。包括顶层设计、组织建设、战略制定、内外部沟通和常见坑点五个方面:

1. 顶层设计

  • 人工智能战略制定的顺序:制定人工智能战略之所以放在第四步,是因为在这之前,企业需要对AI有一定的认知和实践经验。只有先通过试点项目、团队建设和分层培训等步骤,让企业内部对AI有了深入了解,才能制定出切实可行、能够落地的战略。否则,缺乏前期铺垫的AI战略就如同空中楼阁,难以发挥实际作用。
  • Quick win(快速成功)比most valuable(最有价值)更重要:在AI转型初期,先拿下一个容易实现的小目标,远比等待实现一个宏大的最有价值目标更为关键。通过一个个小胜利,不仅能为企业带来实际的成果和收益,还能增强团队信心,积累经验和资源,从而逐步走向最终的胜利。
  • 如何选择quick win项目:
    • 理想情况下,新的或外部AI团队(可能对公司业务了解不深)能够与内部团队(熟悉业务)紧密合作,在6 - 12个月内开发出有成效的AI解决方案。

    • 项目在技术上必须可行。许多公司在项目启动时,常常选择一些以当前AI技术无法实现的项目,因此在启动前让专业靠谱的AI工程师对项目可行性进行评估至关重要。

    • 项目要有明确、可衡量的目标,并且能够创造实际的商业价值。

  • 人工智能试点项目的资源来源:试点项目启动所需的资源通常由CEO提供。当项目成功验证其价值后,AI团队可以寻找内部客户,由内部客户为后续项目提供持续的资源支持。
  • 什么是人工智能公司:
    • 错误理解:简单地将普通公司加上人工智能技术,并不等同于成为真正的AI公司。
    • 正确理解:真正的AI公司需要具备以下三个关键要素:拥有资源能够系统地执行多个有价值的AI项目;公司上下对AI有足够深入的理解,具备系统识别和选择有价值AI项目的流程;公司战略要与AI驱动的未来发展方向高度一致,能够顺应AI时代的发展潮流。

2. 组织建设

  • 人工智能团队与其他团队的关系:AI团队在企业中扮演着中台的角色,主要职责是支持业务部门利用AI技术提升业绩和效率,促进业务的创新发展。
     

  • 人工智能负责人的职责:负责人要致力于打造AI能力,为全公司提供技术支持;先执行一系列跨部门项目,在完成这些初始项目后,建立起持续交付有价值AI项目的长效流程;制定统一的人才招聘和留存标准,吸引和留住优秀的AI人才;积极开发对多个部门都有用,为AI项目提供稳定的数据支持。
  • 如何培养团队的人工智能意识和必备知识
    • 高管和高级业务领导

      (约4小时培训):推荐吴恩达的《AI For Everyone》(B站),该课程从非技术视角解读AI战略,内容涵盖AI能力边界、伦理问题等,时长约6小时,包含了高管需掌握的核心概念。还有《Crash Course AI》(B站),每集仅10分钟,适合碎片化学习,能帮助高管快速了解AI对行业的影响。

    • 开展AI项目的部门领导

      (约12小时培训):《机器学习基石》(林轩田,B站)从算法原理到实践,帮助管理者理解技术可行性评估与资源分配逻辑,课程约30小时,可选择性学习核心模块。《吴恩达机器学习课程》(中英字幕,B站)侧重理论框架,讲解算法并配套Python代码实践,方便项目负责人理解技术术语,与团队进行有效沟通。

    • AI工程师学员

      (约100小时培训):《深度学习专项课程》(吴恩达,B站分五部分)全面覆盖神经网络等知识,配套代码和作业,适合系统性学习。《PyTorch与TensorFlow实战》(莫烦Python,B站)是工具导向教程,涵盖常用库使用,适合快速上手工程化项目。《强化学习纲要》(周博磊,B站)分基础与进阶模块,适合深入算法研究与复杂系统开发,但需要具备Python和PyTorch基础。此外,工程师还需具备扎实的数学(微积分、概率论)和数据清洗能力,可通过3Blue1Brown线性代数、SQL与Pandas教程等课程进行学习。

3. 人工智能战略

  • 聚焦垂直领域:

    企业应专注于自身擅长的垂直领域,建立“Virtuous circle of AI”正反馈循环。在这个过程中,可能起步阶段规模较小,但只要在关键指标上比竞争对手表现更优,就能吸引更多的数据和资源,进一步优化AI模型,提升产品或服务质量,从而形成良性循环,不断巩固和扩大自身在市场中的优势地位。

  • 数据即资产:

    在AI领域,数据就是企业的核心资产。在战略数据获取方面,通常情况下,数据越多越有利于模型训练,但前提是要保证数据的质量和相关性。此外,统一数据仓库也至关重要,企业要考虑将数据集中到一个或少数几个数据仓库中。同时,要认清并非所有数据都有价值。让AI团队在数据获取的早期阶段参与进来,帮助确定获取和保存哪些数据,能够有效避免收集低价值数据,提高数据资源的利用效率。

4. 内外部沟通

  • 投资者关系:

    向投资者清晰阐述公司AI价值创造理念,展示不断提升的AI能力和周全的AI战略,能帮助投资者合理评估公司价值,吸引更多投资。

  • 政府关系:

    在受严格监管行业(如自动驾驶、医疗)的公司,向政府阐述可信、有吸引力的AI故事,说明项目对行业或社会的价值和好处,项目推进时与监管机构直接沟通、持续对话,有助于建立信任和良好关系,确保项目合规开展。

  • 客户/用户教育:及时将AI可能给客户带来的好处,通过合适的营销和产品路线图信息传达给客户,提升客户对产品或服务的认可度。
  • 人才/招聘:

    展示初期成功案例,塑造良好的雇主品牌,吸引AI人才加入,缓解AI人才稀缺问题。

  • 内部沟通:

    通过清晰的内部沟通,向员工解释AI,解决员工对工作被AI取代的担忧,减少内部对采用AI的抵触情绪,促进AI项目在企业内部的顺利推行。

5. 常见的坑点

  • 人工智能并非无所不能,在项目开始前务必做好商业和技术尽职调查,明确项目的可实现范围,避免盲目投入。

  • 不能让AI员工孤立地开展项目,要将他们与业务人员合理搭配,实现技术与业务的深度融合,确保AI技术能够切实解决业务问题。

  • 不要期望人工智能项目一蹴而就,通常需要经过多次迭代、调优,不断改进算法和模型,项目效果才会明显改善。

  • AI项目具有独特的探索性和迭代性,不能照搬传统业务规划方式,否则难以适应AI项目的发展需求。

  • 项目启动不必等到人员全部到位,项目和团队可以在推进过程中不断完善和建设,边实践边优化。

六、总结

《AI Transformation Playbook》诞生虽已6年,但它的内容常看常新,对企业的AI转型具有极高的指导意义。在人工智能落地顺序方面,它给出了从试点项目到战略制定的科学步骤,让企业能够有条不紊地推进AI转型;在建立信心上,强调通过试点项目的快速成功来获取内部支持和资源;组织设置上,指导企业如何打造高效的内部AI团队,以及明确团队与其他部门的协作关系;战略规划层面,帮助企业聚焦垂直领域,构建数据驱动的竞争优势;沟通策略上,教企业如何做好内外部沟通,凝聚各方共识;同时,还详细列举了常见问题及解决方法,帮助企业提前规避风险。

 

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值