今天我要与大家分享的,是关于AI提示词的快速入门。
很多朋友对如何高效使用AI工具感到好奇,今天我将带领大家一探究竟,快速掌握AI提示词的入门之道。无论你是AI新手,还是希望提升技能的老手,相信都能在这里找到你需要的答案。
什么是提示词(Prompt)?
Prompt的定义
Prompt 本质上是一种注入式指令,它"指挥"AI 按照你预设的思路去思考问题、输出内容。熟练编写 Prompt,你就能充分利用 AI 的能力为你解决问题。
为什么要学习 Prompt
学会编写有效的 Prompt 对普通用户有四大好处:
-
提升内容匹配度: 通过精确表达你的需求,AI 可以生成更符合预期的高质量内容,正如厨师准确把握你的口味做出美味佳肴一样。
-
激发AI潜能: 清晰的 Prompt 能触发 AI 的更多潜在技能,就像熟悉菜单的食客能在众多选择中发现令人惊喜的新品。
-
效率与时间优化: 一个明确的 Prompt 可以直接得到所需答案,减少反复调整的时间,大大提高效率。
-
锻炼逻辑与表达: 学习如何编写清晰有效的 Prompt,不仅可以深化对信息组织和传递的理解,还能在其他领域提升语言组织和思维表达能力,这是一种增强个人思维结构和表达技巧的重要练习。
AI模型选择
每个模型都有其独特的长处和短板,关键是要根据具体的应用场景,选择最契合需求的那一款。
-
• 比如,对于需要多模态互动的任务,Chat GPT无疑是不二选择;
-
• 而如果你想处理长篇大论,Claude AI则更有优势。
-
• 对于国内用户以及初学者小白而言,Kimi Chat、秘塔 AI、文心一言 ,也是相当不错的选择,足以应对大多数使用场景。
在这个AI技术飞速发展的时代,我们常常听到一个令人遗憾的现象:许多用户仅仅将AI模型助手视为一个更高级的搜索引擎。这无疑是对这些智能工具潜力的一种浪费。
想象一下,如果你有一个能够帮你撰写文章、分析复杂场景、甚至辅助你制作PPT的智能助手,你的工作效率和创造力将会得到怎样的提升?
这正是现代AI助手所具备的能力。它们不仅仅是回答问题的工具,更是能够提供深度分析、创意生成和个性化服务的智能伙伴。
写提示词的三个原则
1、清晰的指令
给出更清晰的指令,包含更多具体的细节,要让AI充分理解你的需求。
帮我写一份文案
帮我写一份600字的文案
帮我写一份600字,新疆旅游的文案
帮我写一份600字,新疆旅游,用来发小红书的文案
帮我写一份600字,新疆旅游,用来发小红书的文案,并配上emo表情
大家可以测试下上面的提示词,那份是你最想得到的效果?
是不是给出更清晰的指令,生成的效果会更满意一些呢?
2、少量样本参考
想要特定返回效果,一个案例,就能让AI明白你的意图,高效沟通。让我们以下面的例子更好的解释下。
案例: 你是一名多国语言翻译,输入文案的同时可以帮我以‘中文、英语、法语’同时翻译出来 案例:输入:一个大苹果 英语:A big apple. 法语:Une grande pomme
我们把内容输入到kimi中,进行测试,输入新的内容就会按照提示词的案例进行输出,效果如下:
到这里,大家明白案例的用法了吧?
3、分解任务
对于复杂任务,我们可以把它拆解为多个简单的子任务,让AI分步完成。
例如我们可以先用简单的提示词生成一份ppt大纲,然后根据各个章节内容再进行对应的填充。
结构化提示词
结构化提示词是一种有组织、有条理的提示方式,它通过提供清晰的指令和背景信息帮助AI模型更准确地理解用户的需求,从而提供更加精准和有针对性的回答**。**
主要模块如下:
Kimi目前官方提示词工具,也是用的这套方法,如果不会写的话,可以用kimi提示词专家来辅助
选择Kimi+,然后选择提示词专家,可以让提示词专家根据你的内容,生成一段结构化的提示词
这样我们就得到了一个初版的【结构化提示词】,可以自己再进行迭代修改满足最终的需求。
写AI提示词,掌握上面的核心原则和结构化提示词,基本上可以应对90%以上的需求。
今天这篇入门提示词就讲到这里了,后续再给大家分享如何给提示词增加一些烟火气以及更高阶的使用方法哈
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。