在人工智能浪潮中,AI 大模型已成为核心驱动力,广泛应用于各个领域。然而,通用大模型往往难以完美适配特定业务场景的个性化需求。为帮助开发者掌握 AI 大模型微调技术,实现模型的高效定制,特别推出 AI 大模型微调训练营,配备丰富的视频、源码及 PPT 资料,助力学习者深入探索这一前沿领域。
一、课程目标
- 深入理解微调理论:全面解析大模型微调技术理论,让学员明晰不同微调方法的原理、适用场景及优缺点,构建扎实的理论知识体系。无论是基础的全量微调,还是当下热门的轻量化微调技术,如 Adapter Tuning、Prompt Tuning、Prefix Tuning、P_Tuning、LoRA、
- 熟练掌握核心技能:通过大量实战训练,使学员熟练掌握大模型微调的核心技能。涵盖从数据预处理、模型加载与初始化、参数调整,到模型评估与优化的全流程操作。学员能够根据具体任务需求,精准选择合适的微调策略和工具,对主流大模型进行高效微调,显著提升模型在特定任务上的性能表现。
- 积累丰富实战经验:设置多个贴近真实业务场景的项目实践,让学员在实践中积累宝贵的经验。例如,在文本分类任务中,对 BERT 模型进行微调以实现精准的文档主题分类;在图像识别领域,针对特定的图像数据集对预训练模型进行优化,提升对特定目标的识别准确率;在对话系统构建中,通过微调打造更贴合业务需求的智能客服机器人等。通过这些项目,学员能够锻炼解决实际问题的能力,为未来投身相关工作或研究奠定坚实基础。
二、课程内容
- 基础课程(第 1 - 2 天)
-
- 大模型基础认知:详细介绍什么是预训练模型,剖析其在人工智能领域的重要地位及工作机制。深入讲解主流预训练模型,如 BERT(Bidirectional Encoder Representations from Transformers),它通过双向 Transformer 架构能够更好地捕捉文本的上下文信息,在自然语言处理任务中表现卓越;RoBERTa(Robustly Optimized BERT Pretraining Approach),对 BERT 的训练方式进行优化,进一步提升了模型性能;GPT 系列(Generative Pretrained Transformer),以其强大的语言生成能力而闻名,从 GPT - 1 逐步演进到 GPT - 4,不断突破语言处理的边界等,让学员对各类模型有清晰的认识。
-
- 开发环境搭建:指导学员安装 Python 及必要的库,如 transformers 库,它为大模型的使用和微调提供了丰富的工具和接口;torch 库,作为常用的深度学习框架,提供了高效的张量计算和自动求导功能;tensorflow 库,同样是功能强大的深度学习框架,在工业界和学术界广泛应用。同时,教授学员如何使用 Jupyter Notebook 进行实验,Jupyter Notebook 以其交互式的编程环境,方便学员实时运行代码、查看结果和记录思路,极大地提高了开发效率。
-
- 数据集处理:讲解数据集的选择与预处理方法。对于不同的任务,如何筛选高质量、相关性强的数据集至关重要。在预处理阶段,详细介绍如何将文本数据转换为模型能够接受的输入格式,包括文本清洗、分词、编码等操作。例如,使用 NLTK(Natural Language Toolkit)或 SpaCy 等工具进行文本清洗和分词,将文本转换为单词序列;采用 BERT - Tokenizer 等编码工具将单词序列转换为模型可处理的数字编码形式。
-
- 模型构建基础:介绍自定义模型构建与训练循环的基本原理。虽然在微调中通常基于预训练模型进行操作,但了解模型构建的基础知识有助于学员更好地理解模型的内部机制。讲解如何定义模型的架构、层与层之间的连接方式,以及如何构建训练循环来更新模型参数,包括前向传播、计算损失、反向传播和参数更新等步骤。
- 模型微调理论与实践(第 3 天)
-
- 模型微调理论:深入讲解模型微调的理论知识,包括为什么要进行微调、微调的原理以及不同微调方法的比较。微调能够使预训练模型在特定任务上表现更优,其原理是在预训练模型的基础上,通过少量特定领域的数据对模型参数进行调整,使模型能够学习到任务相关的特征。详细分析不同微调方法,如全量微调对模型所有参数进行更新,能够充分利用特定数据,但计算成本高;而轻量化微调方法,如 LoRA(Low - Rank Adaptation)通过引入低秩矩阵来微调模型,大大减少了需要训练的参数数量,降低计算资源需求,同时在性能上也能达到较好的效果。
-
- 使用 Hugging Face Transformers 进行微调:Hugging Face Transformers 库是大模型微调的重要工具之一。课程将详细介绍如何使用该库进行模型微调,包括如何加载预训练模型、配置微调参数、编写微调代码等。通过实际的代码示例,让学员直观地了解微调过程。例如,使用AutoModelForSequenceClassification类加载适合文本分类任务的预训练模型,通过设置TrainingArguments来配置训练参数,如学习率、训练轮数、批量大小等,然后利用Trainer类进行模型的训练和评估。
-
- 模型评估指标:介绍准确率、精确率、召回率、F1 分数等评估指标,让学员了解如何通过这些指标来衡量模型在微调后的性能表现。准确率是指模型预测正确的样本数占总样本数的比例;精确率是指模型预测为正样本且实际为正样本的样本数占模型预测为正样本的样本数的比例;召回率是指模型预测为正样本且实际为正样本的样本数占实际为正样本的样本数的比例;F1 分数则是综合考虑精确率和召回率的指标,能够更全面地反映模型的性能。通过实际案例,教会学员如何根据不同的任务需求,选择合适的评估指标来判断模型的优劣。
- 实战训练
-
- 全量微调实战:以 BERT 模型为例,在特定的文本分类数据集上进行全量微调实战。学员将亲自动手完成从数据准备、模型加载、参数设置到训练和评估的全过程。在数据准备阶段,对数据集进行清洗、标注和划分训练集、验证集、测试集;加载预训练的 BERT 模型,并根据任务需求对模型进行适当的修改,如在模型末尾添加分类层;设置合理的训练参数,如学习率为1e - 5,训练轮数为 5 轮等;通过训练,观察模型在训练集和验证集上的性能变化,最终使用测试集评估模型的泛化能力。
-
- 模型量化实战:使用 GPTQ 和 AWQ 等量化技术对模型进行量化实战,以 OPT 模型为基础。模型量化能够将模型的参数数据类型从高精度转换为低精度,如从 32 位浮点数转换为 16 位浮点数甚至 8 位整数,从而减少模型的存储空间和计算量,提高推理速度。学员将学习如何使用量化工具对模型进行量化操作,以及量化后如何评估模型的性能变化,在保证一定性能损失可接受的前提下,实现模型的高效部署。
-
- LORA 微调实战:针对 Whisper - Large - v2 中文语音识别模型进行 LORA 微调。LORA 微调在保持模型性能的同时,极大地减少了训练参数和计算资源的需求。学员将学习如何在语音识别任务中应用 LORA 技术,包括如何安装和使用相关的 LORA 库,如何根据语音数据的特点设置微调参数,以及如何评估微调后的语音识别准确率、召回率等指标,提升语音识别模型在特定领域或数据集上的性能。
-
- QLoRA 微调实战:以 ChatGLM3 - 6B 模型为对象进行 QLoRA 微调。QLoRA 是一种高效的量化低秩自适应微调方法,结合了模型量化和低秩矩阵调整的优势。学员将深入了解 QLoRA 的原理和实现步骤,通过实际操作,掌握如何使用 QLoRA 对 ChatGLM3 - 6B 模型进行微调,使其更好地适应特定的对话任务或领域知识,如在智能客服对话场景中,提高模型对客户问题的理解和回答准确性。
-
- 私有数据微调实战:利用自己收集或特定业务场景下的私有数据,对 ChatGLM3 模型进行微调。私有数据往往包含了独特的领域知识和业务逻辑,通过对私有数据的微调,能够使模型更好地服务于特定业务。学员将学习如何对私有数据进行预处理,使其符合模型的输入要求;如何在微调过程中保护私有数据的安全和隐私;以及如何评估微调后的模型在私有数据上的性能表现,确保模型能够准确地处理和利用私有数据中的信息。
-
- 指令微调实战:对 LLaMA2 - 7B 模型进行指令微调。指令微调旨在让模型能够更好地理解和执行用户的指令,生成符合用户期望的输出。学员将学习如何构建指令数据集,包括收集和整理各种类型的指令及对应的正确输出;如何使用指令数据集对 LLaMA2 - 7B 模型进行微调,调整模型的参数以使其能够更好地遵循指令;以及如何评估指令微调后的模型在指令理解和生成方面的能力,如通过人工评估和自动评估指标相结合的方式,判断模型生成的回答是否准确、合理且符合指令要求。
-
- 分布式训练实战:介绍如何使用 DeepSpeed ZeRO - 2 和 ZeRO - 3 进行分布式训练。在处理大规模数据和复杂模型时,单机训练往往面临计算资源不足和训练时间过长的问题,分布式训练能够通过多台机器并行计算来加速训练过程。学员将学习分布式训练的原理和架构,如何配置 DeepSpeed 环境以实现 ZeRO - 2 和 ZeRO - 3 的分布式训练;如何将模型和数据分布到多个节点上进行并行计算;以及如何监控分布式训练的进度和性能,解决在分布式训练过程中可能出现的通信问题、同步问题等,实现高效的大规模模型训练。
三、课程特色
- 权威师资:训练营邀请了多位 AI 领域的资深专家和学者作为导师,他们不仅拥有深厚的学术背景,在大模型研究领域发表过多篇高影响力的论文,还积累了丰富的实战经验,曾参与多个大型 AI 项目的开发,在模型微调及应用落地方面有着卓越的成就。在训练营期间,导师们将全程陪伴学员,通过直播授课、在线答疑、项目指导等多种方式,为学员解答疑问,提供专业的指导,确保学员能够深入理解和掌握课程内容。
- 丰富实战资源:训练营提供了丰富的实战资源,包括精心挑选的多样化数据集,涵盖文本、图像、语音等多种模态,适用于不同类型的大模型微调任务;全面的模型库,包含主流的开源大模型,如 BERT、GPT 系列、ChatGLM 系列等,方便学员根据需求选择合适的模型进行微调;以及各类开发工具,如 Hugging Face Transformers、PEFT(Parameter - Efficient Fine - Tuning)、Microsoft Deepspeed 等微调工具库,这些工具能够极大地简化模型微调的流程,提高开发效率。学员可通过专属的学习平台便捷地获取这些资源,快速上手实践。
- 实战导向教学:课程以实战为核心导向,理论讲解紧密结合实际操作。在每个知识模块的讲解后,均安排了相应的实战项目,让学员能够及时将所学理论知识应用到实践中,加深对知识的理解和掌握。通过一系列真实场景的项目实践,如智能客服优化、图像内容审核、语音助手定制等,学员能够在实践中不断积累经验,提升解决实际问题的能力,毕业后能够迅速适应企业的实际项目开发需求。
- 社区互动学习:训练营建立了活跃的学员社区,为学员们提供了一个良好的交流和学习平台。在社区中,学员可以分享自己的学习心得、项目经验和技术见解;遇到问题时,能够及时得到其他学员和助教的帮助;还可以参与各种技术讨论和竞赛活动,激发学习兴趣和创新思维。同时,导师也会不定期在社区中发布行业最新动态和技术前沿信息,拓宽学员的视野,促进学员之间的共同成长。
- 职业发展助力:完成训练营的学习后,学员将获得一份精美的结业证书,该证书是对学员在 AI 大模型微调领域学习成果的权威认证。此外,学员还有机会获得极客及合作企业的推荐信或实习机会。极客与众多知名企业建立了紧密的合作关系,这些企业在 AI 领域处于领先地位,通过推荐和实习机会,学员能够获得更广阔的职业发展空间,为未来的职业道路打下坚实的基础。
四、硬件要求
为顺利完成课程中的实战训练,学员需要配备一定性能的硬件设备。推荐使用 NVIDIA 显卡或者 GPU 云服务器,至少具备 16GB 以上显存,若能拥有 40GB 显存则更佳。在使用 GPU 云服务器时,需确保网络稳定,以保证数据的快速传输和模型训练的顺利进行。对于本地搭建环境的学员,除了显卡外,还需保证计算机的 CPU 性能、内存容量以及硬盘空间能够满足模型训练和数据存储的需求,如配备多核心高性能 CPU、32GB 及以上内存、500GB 及以上固态硬盘等。
五、课程资料
- 视频教程:课程配备了系统全面的视频教程,由资深导师亲自授课。视频内容涵盖从基础理论知识的讲解,到复杂微调技术的演示,再到实战项目的全程指导。每个知识点都讲解细致,通过生动的案例、直观的动画演示和实际的代码操作,让学员能够轻松理解和掌握。视频教程支持在线观看和离线下载,方便学员随时随地学习,可根据自己的学习进度进行暂停、回放等操作,确保对每个知识点都能吃透。
- 源码示例:提供丰富的源码示例,与课程内容紧密结合。在每个实战项目中,都给出了详细的源码实现,包括数据预处理代码、模型加载与微调代码、模型评估代码等。源码注释详细,结构清晰,方便学员阅读和理解。学员可以通过研究源码,深入了解模型微调的具体实现细节,学习优秀的代码编写规范和技巧。同时,学员还可以根据自己的需求对源码进行修改和扩展,进行二次开发,将所学知识灵活应用到实际项目中。
- PPT 课件:精心制作的 PPT 课件是课程的重要学习资料之一。PPT 内容简洁明了,重点突出,将复杂的知识点以清晰的逻辑结构呈现出来。通过图文并茂的方式,对 AI 大模型微调的理论知识、技术要点、实战步骤等进行了详细的总结和梳理。PPT 中还包含大量的案例分析、图表对比和代码片段展示,有助于学员更好地理解和记忆知识点。学员可以在课堂上配合老师的讲解使用 PPT,也可以在课后复习时作为重要的参考资料,快速回顾所学内容,构建完整的知识体系。
大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。
1.学习路线图
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。
(都打包成一块的了,不能一一展开,总共300多集)
因篇幅有限,仅展示部分资料,需要点击下方图片前往获取
3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓