既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
案例:
曲线的法面【重要】
案例:
曲线的自然参数表示
案例:
空间曲线
这一节,我们研究空间曲线的基本理论,主要将研究刻画空间曲线在某点邻近的弯曲程度和离开平面程度的量一曲率和挠率,以及研究空间曲线在一点邻近的近似形状,并找出决定空间曲线的条件.
曲线的密切平面
案例:
空间曲线的基本三棱形【重要】
单位切向量
主法向量
副法向量
Frenet标架
计算公式:
螺旋线的案例
接下来主法线,副法线
求基本向量
曲线的曲率和曲率半径
我们首先研究空间曲线的曲率的概念.在不同的曲线或者同一条曲线的不同点处,曲线弯曲的程度可能不同.例如半径较大的圆弯曲程度较小,而半径较小的圆弯曲的程度较大
曲率的几何意义
由上述空间曲线的曲率的定义可以看出,它的几何意义是曲线的切向量对于弧长的旋转速度。当曲线在一点的弯曲程度越大,切向量对于弧长的旋转速度就越大,因此曲率刻画了曲线的弯曲程度.
曲率半径:
曲线的挠率
挠率的几何意义
此式的几何意义是它的数值为曲线的副法向量(或密切平面)对于弧长的旋转速度。当曲线在一点的扭转程度越大(离开所讨论点的密切平面的程度越大),副法向量(或密切平面)对于弧长的旋转速度就越大。因此,我们可以用它来刻画曲线的扭转程度
空间曲线的伏雷内公式
案例:
案例:
空间曲线在一点邻近的结构
曲线在某点的曲率和挠率完全决定了曲线在该点邻近的近似形状.
空间曲线论基本定理
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
中…(img-hFL5d4Yo-1715371480731)]
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!