第九章(6)--多元函数微分学的几何应用

1.向量值函数的定义: 

a.         数集\tiny D\subset R 到 三维欧氏空间 \tiny R^3的映射 \tiny f:D\rightarrow R^3,  称为一元向量值函数  

b.         记作: \tiny \overrightarrow{r}=f(t),t\epsilon D\subset R

c.         D 称为向量值函数 f  的定义域,t 被称为自变量,r 称为因变量 。

d.        一元向量值函数 与  一元数量值函数:前者是后者的推广,现在自变量 t 依然是实数值 ,因变量  r 不再取实数而是取值               n维向量

 

2  三维空间\tiny R^3 中的向量值函数的坐标分解表达式:

有向量值函数 \tiny f(t),t\epsilon D\subset R  ,若它的三个分量以此为 \tiny f_1(t),f_2(t),f_3(t)  ,则有向量值函数可以表示为:

\tiny f(t)=f_1(t)i+f_2(t)j+f_3(t)k ,OR, f(t)=(f_1(t),f_2(t),f_3(t))

 

3  向量值函数的图形:

三维向量值函数 \tiny r=f(t),t\epsilon D  的图形三维空间中的一条曲线,称为终端曲线。

描述如下:

设变向量r的起点取在坐标系的原点O处,终点在M处,即是 \tiny r= \overrightarrow{OM}。当自变量 t 发生变化的时候,r 跟着发生变化,从而终点M也随之改变,终点M的轨迹是空间中的一条曲线,就是三维向量值函数  \tiny r=f(t),t\epsilon D  的图形,即是终端曲线。 

结论:1.向量值函数和空间中的曲线有  一一对应的关系: 有一条空间曲线就有一个向量值函数 ,有一个向量值函数就有取定了一条空间曲线 。

           2.向量值函数 \tiny f(t)=f_1(t)i+f_2(t)j+f_3(t)k =(f_1(t),f_2(t),f_3(t)),t\epsilon D  称为对应空间曲线的向量方程

4. 向量值函数的极限

设向量值函数 \tiny f(t)  在 t 的某领域内有定义,

如果存在一个常向量 

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值