【根据loss曲线看模型微调效果】如何使用loss曲线诊断机器学习模型性能

本文介绍了如何通过观察Loss曲线来评估机器学习模型的训练效果,区分欠拟合、过拟合和完美拟合,并通过实例展示了如何使用随机梯度下降优化器调整参数以优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Loss曲线

    在模型的预训练或者微调过程中,我们一般通过观察loss曲线来得出模型对于数据集的学习效果等信息。那么我们如何根据loss曲线得到一些信息呢?

    通常数据集会被划分成三部分,训练集(training dataset)、验证集(validation dataset)、测试集(test dataset)。我们在训练模型时也经常会根据训练集的loss和验证集loss来诊断模型,从而期望能够优化参数训练处一个更好的模型,这个更好指的是能在测试集上表现更好的模型,也就是泛化能力(generalization)强的模型。那怎么根据loss曲线去诊断模型呢?

    首先根据模型的表现我们把它分成三类:

  • Underfit(欠拟合)
  • Overfit(过拟合)
  • Good fit (完美拟合)

    那我们目标肯定是得到一个good-fit模型,但是在训练过程中会出现Underfit和Overfit。那么我们需要做的就是首先根据loss曲线判断模型现在处于哪种拟合情况,然后再进行调整参数。那我们先看看每种拟合的loss曲线是怎样的?

1.Underfit(欠拟合)

Underfit指的是模型不能很好的学习训练集。

    如下图所示,这就是一个Underfit的例子,仅根据training loss就可以判断。这个training loss下降的非常平缓以致于好像都没有下降,这说明模型根本没有从训练集学到什么东西!
在这里插入图片描述
    下图也是Underfit情况,这种情况的特点是在训练结束时候training loss还在继续下降,这说明还有学习空间,模型还没来得及学就结束了。
在这里插入图片描述

2.Overfit(过拟合)

    Overfit指的是模型把训练集学的有点过了,以致于把一些噪音(noise)和随机波动(random fluctuations)也学进来了。就好像抄别人卷子时候把别人的错别字也照抄一样。这也是我们在训练中最经常出现的问题,overfit有时候是因为训练太久造成的。那Overfit的loss曲线长什么样呢?

    如下图所示,overffit时候training loss一直在不断地下降,而validation loss在某个点开始不再下降反而开始上升了,这就说明overfit,我们应该在这个拐点处停止训练。

在这里插入图片描述

3.Good fit (完美拟合)

    Good git是我们的目标,它在loss曲线上的特点是training loss和validation loss都已经收敛并且之间相差很小很小。如下图所示,模型在20轮过后,两个loss曲线都开始收敛,而且两者之间并没有肉眼的差距。 通常traing loss会更小,这样他们之间就会有个gap,这个gap叫做generalization gap。

在这里插入图片描述

二、不同Loss表现

3.1 Underfit

我们使用随机梯度下降(SGD)优化器,学习率为0.01,训练10轮,代码如下

#underfit
epochs = 10
sgd = optimizers.sgd(lr=0.01)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])

然后我们就得到了一个Underfitting模型,如下图所示,在训练结束的时候training loss还在下降,这说明模型还未学习充分。
在这里插入图片描述

3.2 Overfit

然后我们使用sgd作为优化器时候,训练30轮

#overfit
epochs = 30
sgd = optimizers.sgd(lr=0.01)
model.compile(loss='binary_crossentropy', optimizer=sgd, metrics=['accuracy'])

结果出现了过拟合的情况,loss曲线如下图

在这里插入图片描述

Reference
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/

### 解析 Import Error 的常见原因 当遇到 `ImportError: cannot import name 'Generic'` 错误时,通常意味着尝试从模块中导入的对象不存在或无法访问。此问题可能由多种因素引起: - 版本不兼容:不同库之间的版本冲突可能导致此类错误。 - 安装缺失:目标库未正确安装或路径配置有误。 - 导入语句不当:可能存在循环依赖或其他语法层面的问题。 ### 针对 Generic 类型的具体解决方案 对于特定于 `Generic` 的情况,考虑到 Python 中 `Generic` 是 typing 模块的一部分,在处理该类别的 ImportError 时可采取如下措施[^1]: #### 方法一:确认typing模块可用性 确保环境中已安装标准库中的 typing 模块,并且其版本支持所使用的特性。可以通过以下命令验证: ```bash python -c "from typing import Generic; print(Generic)" ``` 如果上述命令执行失败,则可能是由于 Python 或者相关扩展包的版本过低造成的。此时应考虑升级至更高版本的解释器以及对应的开发工具链。 #### 方法二:调整导入方式 有时直接通过顶层命名空间来获取所需组件会更稳定可靠。修改代码以采用这种做法可能会解决问题: ```python from collections.abc import Iterable # 如果是迭代器相关接口 from typing import TypeVar, Protocol # 对于协议和泛型定义 T = TypeVar('T') class MyContainer(Protocol[T]): ... ``` 注意这里并没有显式提到 `Generic` ,而是利用了更为基础的数据结构抽象基类或是其他替代方案实现相同功能[^2]。 #### 方法三:排查环境变量设置 检查系统的 PYTHONPATH 和虚拟环境配置是否正常工作。任何异常都可能导致某些第三方软件包找不到必要的资源文件而引发类似的错误提示。建议清理并重建项目专属的工作区以便排除干扰项的影响。 #### 示例修正后的代码片段 假设原始代码试图这样引入 `Generic` : ```python from some_module import Generic # 可能导致 ImportError ``` 改为遵循官方文档推荐的方式后变为: ```python from typing import Generic # 正确的做法 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Itfuture03

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值