Zero-Shot Learning 原理与代码实例讲解
作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming
关键词
Zero-Shot Learning, 零样本学习, 预训练模型, 跨领域适应, 类别预测, 数据稀疏, 主动学习
1. 背景介绍
1.1 问题的由来
随着深度学习技术的发展,机器学习模型在各个领域都取得了显著的成果。然而,大多数机器学习任务都依赖于大量的标注数据。在现实世界中,获取大量标注数据往往成本高昂且耗时费力。这使得Zero-Shot Learning(零样本学习)成为了一个备受关注的研究方向。Zero-Shot Learning旨在让机器学习模型能够对未见过的类别进行预测,即使没有针对这些类别进行过专门的训练。
1.2 研究现状
近年来,Zero-Shot Learning取得了显著的进展,涌现出许多有效的算法和模型。这些方法可以分为以下几类:
- 基于原型的方法:将每个类别看作一个原型,计算查询样本与原型之间的距离,并根据距离进行预测。
- 基于原型匹配的方法:在查询样本上应用一个