隐马尔可夫模型 (Hidden Markov Models, HMM) 原理与代码实例讲解

隐马尔可夫模型 (HMM)、状态转移概率、观测概率、维特比算法、语音识别、自然语言处理、机器学习

1. 背景介绍

隐马尔可夫模型 (Hidden Markov Models, HMM) 是一种强大的概率模型,广泛应用于各种领域,例如语音识别、自然语言处理、生物信息学等。它能够处理隐藏状态和观测数据的序列,并预测隐藏状态的演变规律。

HMM 的核心思想是将一个系统看作一个马尔可夫链,其中每个状态都是隐藏的,只能通过观测数据间接推断。每个状态都有一个对应的观测概率,即在该状态下观测到特定数据的概率。

2. 核心概念与联系

2.1 核心概念

  • 状态 (State): 系统可能处于的隐藏状态,例如“说话”、“沉默”等。
  • 观测 (Observation): 从系统中观察到的数据,例如“音素”、“单词”等。
  • 状态转移概率 (Transition Probability): 从一个状态转移到另一个状态的概率。
  • 观测概率 (Emission Probability): 在特定状态下观测到特定数据的概率。

2.2 HMM 架构


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值