隐马尔可夫模型 (HMM)、状态转移概率、观测概率、维特比算法、语音识别、自然语言处理、机器学习
1. 背景介绍
隐马尔可夫模型 (Hidden Markov Models, HMM) 是一种强大的概率模型,广泛应用于各种领域,例如语音识别、自然语言处理、生物信息学等。它能够处理隐藏状态和观测数据的序列,并预测隐藏状态的演变规律。
HMM 的核心思想是将一个系统看作一个马尔可夫链,其中每个状态都是隐藏的,只能通过观测数据间接推断。每个状态都有一个对应的观测概率,即在该状态下观测到特定数据的概率。
2. 核心概念与联系
2.1 核心概念
- 状态 (State): 系统可能处于的隐藏状态,例如“说话”、“沉默”等。
- 观测 (Observation): 从系统中观察到的数据,例如“音素”、“单词”等。
- 状态转移概率 (Transition Probability): 从一个状态转移到另一个状态的概率。
- 观测概率 (Emission Probability): 在特定状态下观测到特定数据的概率。
2.2 HMM 架构