引言与背景
在当今人工智能(AI)快速发展的时代,跨域迁移学习(Cross-Domain Transfer Learning)已成为一个热门的研究领域。而“零样本迁移学习”(Zero-Shot Transfer Learning,简称Zero-Shot CoT)更是其中的一项创新技术,它突破了传统迁移学习的限制,使得机器能在未见过的领域中进行有效学习。本文旨在深入探讨Zero-Shot CoT的概念、原理及其在AI跨域迁移学习中的应用。
核心概念
零样本迁移学习(Zero-Shot Transfer Learning):所谓零样本迁移学习,指的是在目标领域缺乏样本数据的情况下,通过将知识从源领域迁移到目标领域,使机器能够在新领域中进行有效学习。这种技术的重要性在于,它不仅能够解决数据稀缺的问题,还能提高模型的泛化能力,从而在资源受限的环境下实现高效学习。
跨域迁移学习(Cross-Domain Transfer Learning):跨域迁移学习是指将从一个领域(源领域)学到的知识迁移到另一个不同的领域(目标领域)中。与传统迁移学习不同,跨域迁移学习面临更多挑战,如源领域与目标领域之间的不