引言
1.1 问题背景
在当今数据驱动的世界中,评测结果自动分析已经成为众多领域的重要需求。无论是在学术研究、工业制造、金融分析,还是医疗诊断,评测结果的准确性和快速处理都直接影响决策的效率和准确性。传统的评测结果分析往往依赖于人工处理,这不仅耗时且容易出错,特别是在面对大量复杂的数据时。因此,如何实现评测结果的自动化分析成为了一个亟待解决的问题。
自动分析评测结果的目标在于从大量的评测数据中提取有价值的信息,生成见解报告。这不仅可以帮助用户快速了解评测结果的整体趋势,还能发现潜在的问题和机会。然而,传统的自动分析方法存在一定的局限:
- 规则依赖性强:传统方法通常依赖于预设的规则,这些规则往往难以覆盖所有可能的场景,导致分析结果不够全面和准确。
- 可扩展性差:当评测结果的维度和类型发生变化时,传统的分析方法需要重新编写规则,导致开发成本高,维护困难。
- 理解性低:传统方法生成的报告往往较为机械,难以直观地表达评测结果的含义,不利于用户理解和使用。
为了解决上述问题,近年来,基于大型语言模型(LLM)的自动分析方法逐渐崭露头角。LLM具有强大