阿里:竞赛级LLM代码生成基准

在这里插入图片描述

📖标题:CODEELO: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings
🌐来源:arXiv, 2501.01257

🌟摘要

🔸随着现有大型语言模型(LLM)的代码推理能力不断增强,以及OpenAI o1和o3等推理模型的突破,越来越需要开发更具挑战性和全面的基准,以有效测试其复杂的竞争级编码能力。现有的基准测试,如LiveCodeBench和USACO,由于没有私有测试用例、缺乏对特殊法官的支持以及执行环境不一致而达不到要求。
🔸为了弥合这一差距,我们引入了CODEELO,这是一个标准化的竞争级代码生成基准,首次有效地解决了所有这些挑战。CODEELO基准测试主要基于官方的CodeForces1平台,并试图尽可能地与该平台保持一致。我们在CodeForces上汇编了最近六个月的竞赛问题,其中包含竞赛划分、问题难度评级和问题算法标签等详细信息。我们引入了一种独特的判断方法,将问题直接提交给平台,并开发了一个可靠的Elo评级计算系统,该系统与平台一致,与人类参与者相当,但方差较低。
🔸通过在我们的CODEELO上进行测试,我们首次提供了30个现有流行的开源LLM和3个专有LLM的Elo评级。结果显示࿰

### 实现大型语言模型的代码自动生成 为了理解如何实现大型语言模型LLM)驱动的代码自动生成,重要的是认识到这类技术依赖于模型所具备的“涌现行为”,即执行未曾明确训练过的任务的能力[^1]。通过利用这一特性,可以构建系统来自动编写代码。 #### 构建基础架构 首先,创建一个API接口用于接收编程请求,并返回由LLM生成的代码片段。此过程涉及设置服务器端逻辑和服务客户端交互的方法: ```python from fastapi import FastAPI, HTTPException import requests app = FastAPI() @app.post("/generate_code/") async def generate_code(prompt: str): try: response = requests.post( "https://example.com/llm_endpoint", json={"prompt": prompt} ) generated_code = response.json()["generated_text"] return {"code": generated_code} except Exception as e: raise HTTPException(status_code=500, detail=str(e)) ``` 这段Python脚本展示了如何使用FastAPI框架搭建RESTful API服务,它接受来自用户的提示作为输入参数,并调用远程LLM端点获取响应中的`generated_text`字段作为输出结果。 #### 整合开发工具链 为了让开发者更便捷地集成此类功能到企业AI应用中,应当提供易于使用的标准API以及简洁明了的文档说明[^2]。例如,在上述例子的基础上进一步封装成库的形式供其他应用程序调用: ```python class CodeGeneratorClient: def __init__(self, api_url="http://localhost:8000/generate_code/", headers=None): self.api_url = api_url self.headers = headers or {} async def get_generated_code(self, description): payload = {'prompt': f'Write Python function based on this specification:\n{description}'} resp = await requests.post(self.api_url, json=payload) if not resp.ok: raise ValueError(f"Failed to fetch data from {self.api_url}") result = resp.json() return result.get('code') ``` 这里定义了一个名为`CodeGeneratorClient`类,该类允许用户仅需几行简单的配置就能轻松接入预设好的LLM环境来进行代码生成功能的测试与部署工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值