MCP的起源
随着人工智能的发展,有很多的大模型发布,早期的模型主要依赖静态训练数据,其能力受限于训练时的知识边界,无法直接获取实时数据或与外部系统交互。这就会造成模型无法理解用户的历史上下文、无法调用外部工具执行任务、也无法动态更新知识库。
开发者开始尝试通过定制化的 API 或插件将模型与外部数据源连接。每个应用或者数据源都需要独立的接口开发,导致重复劳动和维护成本激增。
这种“点对点”集成的 NxM 问题(M个AI应用和N个工具 / 数据源,可能需要 M×N 个定制集成。)使得系统扩展性受限,开发效率低下,同时也增加了安全性和一致性管理的难度。
而如果我们是否可以通过引入中间的标准接口解决此问题,将 M×N 直接集成变为 M+N 个实现。就比如说是将手机、电脑、还有剃须刀等的所有不同类型的充电接口,比如之前的苹果专用充电线,安卓充电线全部规范成Type-C,那这样各种小型电器的充电口就可以通用了。
那么整个的开发集成的数量就会下降很多,从之前的M*N,变为了M+N。一个应用的接口就可以接所有的模型,如下图所示。
这就是MCP(Model Context Protocol,模型上下文协议)的思路,这是由Anthropic 团队于2024 年 11 月提出来的。MCP的出现解决上面提到的几个主要问题:
接口碎片化——MCP 通过标准化的 JSON-RPC 格式,统一了通信语言,让 AI 模型一次学习就能调用所有支持 MCP 的工具。
数据孤岛——MCP 让 AI 能安全地访问本地或远程数据 source,打破了“信息孤岛”,使模型能实时获取最新信息。
开发效率低下——MCP 提供了一个“即插即用”的生态,开发者只需实现一次 MCP 接口,就能让 AI 访问多种服务,大幅提升开发效率。
MCP的内容
USB-C 提供了一种标准化的方式将设备连接到各种外围设备和配件,MCP 也提供了一种标准化的方式将 AI 模型连接到不同的数据源和工具。
简单说,MCP 是一个开放协议,让 AI 模型能像人一样,调用工具、访问数据、执行任务。它通过标准化的通信方式,解决了 AI 模型与外部世界交互的碎片化问题。
想象一下,没有 MCP 的 AI 就像一个只能“动嘴”的助手,告诉你怎么做事;有了 MCP,它就能“动手”,直接帮你完成任务。
通常而言,MCP 的技术框架围绕三个关键组件构建:主机(Host)、客户端(Client)和服务器(Server)。这些组件共同协作,形成了一个高效、可扩展的生态系统,为 AI 模型与外部资源之间的动态交互提供了坚实的基础。
主机(Host)
面向用户的 AI 应用,如聊天应用 等。它发起与 MCP 服务器的连接,捕获用户输入,保留对话历史并显示模型回复。
这些宿主不仅为用户提供与人工智能模型互动的平台,还负责集成外部工具、访问多样化的数据资源,并运行 MCP 客户端(MCP Client)以实现协议的核心功能。作为整个系统的基石,宿主通过提供一个动态、可扩展的操作环境,确保 AI 模型能够无缝调用外部能力,从而提升其实用性和智能化水平。
MCP 客户端(MCP Client)
则是运行于主机内部的关键组件,专门负责与 MCP 服务器(MCP Server)建立高效通信。它充当了宿主与外部资源之间的桥梁,通过标准化的协议接口协调数据传输和指令交互,确保信息的实时性与一致性。
MCP 客户端的设计充分体现了模块化与轻量化的理念,使宿主应用程序能够灵活对接多个服务器,进而支持复杂任务的执行,例如多源数据整合或跨工具协作。
服务器(Server)
提供功能(工具等)的外部程序或服务,可本地或远程运行,关键是以标准格式告知能做什么,执行客户端请求并返回结果。
MCP 服务器不仅连接了外部资源与 AI 模型,还通过标准化的方式提供多样化的服务,以满足复杂应用场景的需求。
具体而言,其功能可以细分为以下几个关键方面:
1、工具:MCP 服务器能够为大型语言模型(LLMs)提供执行具体操作的能力。例如,通过服务器端的工具接口,LLMs 可以完成从代码调试到文件管理的各类任务,从而将模型的语言生成能力转化为实际的生产力。
2、资源:服务器负责向 LLMs 暴露来自不同数据源的内容和信息,例如企业内部数据库、云存储文件或实时 API 数据。这种资源的开放性赋予了模型更强的上下文感知能力,使其能够基于最新数据生成更准确的输出。
3、提示:MCP 服务器支持创建可复用的提示模板和工作流,帮助开发者设计标准化的交互模式。这种功能特别适用于需要高效迭代或批量处理的任务场景——例如自动化客服或内容生成流程。
MCP如何工作
- 用户发送消息:用户通过客户端应用程序发送一条消息。
- 客户端传递消息:客户端将用户的消息传递给 LLM。
- LLM 请求工具或数据:LLM 可能需要额外的工具或数据来处理请求,因此向客户端发出请求。
- 客户端向 MCP 服务器请求:客户端根据 LLM 的需求,通过 MCP 协议向 MCP 服务器发送请求。
- MCP 服务器访问数据源:MCP 服务器根据请求访问相应的数据源。
- 数据源返回数据:数据源将所需的数据返回给 MCP 服务器。
- MCP 服务器返回工具或数据:MCP 服务器将获取到的工具或数据返回给客户端。
- 客户端提供工具或数据给 LLM:客户端将工具或数据传递给 LLM。
- LLM 返回处理结果:LLM 使用提供的工具或数据生成处理结果,并返回给客户端。
- 客户端显示最终结果:客户端将 LLM 的处理结果展示给用户。
MCP的应用
MCP 的灵活性和标准化特性使其在多种场景中大放异彩。以下是几个典型的应用案例:
- 文件管理
用户对 AI 说:“整理我电脑里上周的会议记录。”传统 AI 只能回复操作步骤,而支持 MCP 的 AI 可以直接访问文件系统,完成分类归档、生成摘要,甚至将待办事项同步到日历。
案例:Claude Desktop 通过 MCP 服务器访问本地文件,自动整理下载文件夹并生成会议笔记。
2. 信息查询
用户询问:“这份 PDF 报告的结论是什么?” AI 通过 MCP 服务器读取 PDF 内容,分析并提供总结。类似地,AI 还能调用天气 API、地图导航或新闻服务,回答如“今天北京的天气如何?”等问题。
案例:通过 MCP 天气服务器,AI 助手直接返回简洁的天气预报,并可将结果记录到用户的笔记应用。
3. 跨平台自动化
MCP 支持多工具联动,适合复杂的自动化任务。例如,用户说:“帮我订明天下午飞巴黎的机票,并把行程同步到 Notion 日历。” AI 通过 MCP 服务器调用航班预订 API 获取选项,完成下单后,再调用 Notion API 更新日历,整个流程一气呵成。
案例:某企业通过 MCP 集成 ERP 系统,AI 自动完成订单处理和库存管理,效率提升数倍。
MCP的未来
MCP 的出现,为 AI 模型与现实世界的交互打开了一扇大门。它不仅解决了接口碎片化和数据孤岛的问题,还通过标准化和安全机制,让开发者能更高效地构建复杂的 AI 应用。从文件管理到企业自动化,从开发者工作流到物联网,MCP 的应用场景正在不断扩展。
MCP 的快速发展预示着它可能成为 AI 应用架构的基石。未来,MCP 有望在以下方向继续突破:
- 状态化交互:支持更复杂的多轮交互,增强 AI 的上下文感知能力。
- 跨公司协作:随着 OpenAI、Google 等巨头的加入,MCP 可能成为社区驱动的开放标准,类似 HTTP 的基础设施。
- 物理世界集成:通过与物联网设备结合,MCP 可让 AI 控制智能家居或工业设备,实现“意图即行动”。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发