【必学技术】MCP:大模型与外部工具交互的标准协议,AI开发者的新利器,建议收藏

MCP的起源

随着人工智能的发展,有很多的大模型发布,早期的模型主要依赖静态训练数据,其能力受限于训练时的知识边界,无法直接获取实时数据或与外部系统交互。这就会造成模型无法理解用户的历史上下文、无法调用外部工具执行任务、也无法动态更新知识库。

开发者开始尝试通过定制化的 API 或插件将模型与外部数据源连接。每个应用或者数据源都需要独立的接口开发,导致重复劳动和维护成本激增。

在这里插入图片描述

这种“点对点”集成的 NxM 问题(M个AI应用和N个工具 / 数据源,可能需要 M×N 个定制集成。)使得系统扩展性受限,开发效率低下,同时也增加了安全性和一致性管理的难度。

在这里插入图片描述

而如果我们是否可以通过引入中间的标准接口解决此问题,将 M×N 直接集成变为 M+N 个实现。就比如说是将手机、电脑、还有剃须刀等的所有不同类型的充电接口,比如之前的苹果专用充电线,安卓充电线全部规范成Type-C,那这样各种小型电器的充电口就可以通用了。

那么整个的开发集成的数量就会下降很多,从之前的M*N,变为了M+N。一个应用的接口就可以接所有的模型,如下图所示。

这就是MCP(Model Context Protocol,模型上下文协议)的思路,这是由Anthropic 团队于2024 年 11 月提出来的。MCP的出现解决上面提到的几个主要问题:

接口碎片化——MCP 通过标准化的 JSON-RPC 格式,统一了通信语言,让 AI 模型一次学习就能调用所有支持 MCP 的工具。

数据孤岛——MCP 让 AI 能安全地访问本地或远程数据 source,打破了“信息孤岛”,使模型能实时获取最新信息。

开发效率低下——MCP 提供了一个“即插即用”的生态,开发者只需实现一次 MCP 接口,就能让 AI 访问多种服务,大幅提升开发效率。

MCP的内容

USB-C 提供了一种标准化的方式将设备连接到各种外围设备和配件,MCP 也提供了一种标准化的方式将 AI 模型连接到不同的数据源和工具。

简单说,MCP 是一个开放协议,让 AI 模型能像人一样,调用工具、访问数据、执行任务。它通过标准化的通信方式,解决了 AI 模型与外部世界交互的碎片化问题。
想象一下,没有 MCP 的 AI 就像一个只能“动嘴”的助手,告诉你怎么做事;有了 MCP,它就能“动手”,直接帮你完成任务。

通常而言,MCP 的技术框架围绕三个关键组件构建:主机(Host)、客户端(Client)和服务器(Server)。这些组件共同协作,形成了一个高效、可扩展的生态系统,为 AI 模型与外部资源之间的动态交互提供了坚实的基础。

主机(Host)

面向用户的 AI 应用,如聊天应用 等。它发起与 MCP 服务器的连接,捕获用户输入,保留对话历史并显示模型回复。

这些宿主不仅为用户提供与人工智能模型互动的平台,还负责集成外部工具、访问多样化的数据资源,并运行 MCP 客户端(MCP Client)以实现协议的核心功能。作为整个系统的基石,宿主通过提供一个动态、可扩展的操作环境,确保 AI 模型能够无缝调用外部能力,从而提升其实用性和智能化水平。

MCP 客户端(MCP Client)

则是运行于主机内部的关键组件,专门负责与 MCP 服务器(MCP Server)建立高效通信。它充当了宿主与外部资源之间的桥梁,通过标准化的协议接口协调数据传输和指令交互,确保信息的实时性与一致性。

MCP 客户端的设计充分体现了模块化与轻量化的理念,使宿主应用程序能够灵活对接多个服务器,进而支持复杂任务的执行,例如多源数据整合或跨工具协作。

服务器(Server)

提供功能(工具等)的外部程序或服务,可本地或远程运行,关键是以标准格式告知能做什么,执行客户端请求并返回结果。

MCP 服务器不仅连接了外部资源与 AI 模型,还通过标准化的方式提供多样化的服务,以满足复杂应用场景的需求。

具体而言,其功能可以细分为以下几个关键方面:

  1、工具:MCP 服务器能够为大型语言模型(LLMs)提供执行具体操作的能力。例如,通过服务器端的工具接口,LLMs 可以完成从代码调试到文件管理的各类任务,从而将模型的语言生成能力转化为实际的生产力。

  2、资源:服务器负责向 LLMs 暴露来自不同数据源的内容和信息,例如企业内部数据库、云存储文件或实时 API 数据。这种资源的开放性赋予了模型更强的上下文感知能力,使其能够基于最新数据生成更准确的输出。

  3、提示:MCP 服务器支持创建可复用的提示模板和工作流,帮助开发者设计标准化的交互模式。这种功能特别适用于需要高效迭代或批量处理的任务场景——例如自动化客服或内容生成流程。

MCP如何工作

  1. 用户发送消息:用户通过客户端应用程序发送一条消息。
  2. 客户端传递消息:客户端将用户的消息传递给 LLM。
  3. LLM 请求工具或数据:LLM 可能需要额外的工具或数据来处理请求,因此向客户端发出请求。
  4. 客户端向 MCP 服务器请求:客户端根据 LLM 的需求,通过 MCP 协议向 MCP 服务器发送请求。
  5. MCP 服务器访问数据源:MCP 服务器根据请求访问相应的数据源。
  6. 数据源返回数据:数据源将所需的数据返回给 MCP 服务器。
  7. MCP 服务器返回工具或数据:MCP 服务器将获取到的工具或数据返回给客户端。
  8. 客户端提供工具或数据给 LLM:客户端将工具或数据传递给 LLM。
  9. LLM 返回处理结果:LLM 使用提供的工具或数据生成处理结果,并返回给客户端。
  10. 客户端显示最终结果:客户端将 LLM 的处理结果展示给用户。

MCP的应用

MCP 的灵活性和标准化特性使其在多种场景中大放异彩。以下是几个典型的应用案例:

  1. 文件管理

用户对 AI 说:“整理我电脑里上周的会议记录。”传统 AI 只能回复操作步骤,而支持 MCP 的 AI 可以直接访问文件系统,完成分类归档、生成摘要,甚至将待办事项同步到日历。
案例:Claude Desktop 通过 MCP 服务器访问本地文件,自动整理下载文件夹并生成会议笔记。

2. 信息查询

用户询问:“这份 PDF 报告的结论是什么?” AI 通过 MCP 服务器读取 PDF 内容,分析并提供总结。类似地,AI 还能调用天气 API、地图导航或新闻服务,回答如“今天北京的天气如何?”等问题。
案例:通过 MCP 天气服务器,AI 助手直接返回简洁的天气预报,并可将结果记录到用户的笔记应用。

3. 跨平台自动化

MCP 支持多工具联动,适合复杂的自动化任务。例如,用户说:“帮我订明天下午飞巴黎的机票,并把行程同步到 Notion 日历。” AI 通过 MCP 服务器调用航班预订 API 获取选项,完成下单后,再调用 Notion API 更新日历,整个流程一气呵成。
案例:某企业通过 MCP 集成 ERP 系统,AI 自动完成订单处理和库存管理,效率提升数倍。

MCP的未来

MCP 的出现,为 AI 模型与现实世界的交互打开了一扇大门。它不仅解决了接口碎片化和数据孤岛的问题,还通过标准化和安全机制,让开发者能更高效地构建复杂的 AI 应用。从文件管理到企业自动化,从开发者工作流到物联网,MCP 的应用场景正在不断扩展。

MCP 的快速发展预示着它可能成为 AI 应用架构的基石。未来,MCP 有望在以下方向继续突破:

  • 状态化交互:支持更复杂的多轮交互,增强 AI 的上下文感知能力。
  • 跨公司协作:随着 OpenAI、Google 等巨头的加入,MCP 可能成为社区驱动的开放标准,类似 HTTP 的基础设施。
  • 物理世界集成:通过与物联网设备结合,MCP 可让 AI 控制智能家居或工业设备,实现“意图即行动”。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

MCP(Multi-Context Pathway)是一种标准化协议,它为AI大模型外部工具之间的数据交互提供了一种高效、灵活且安全的解决方案。MCP通过统一的接口设计和上下文管理机制,使得大模型能够无缝连接并操作多种类型的外部资源,如数据库、API接口以及文件系统等。 MCP实现大模型外部工具数据交互的方法主要包括以下几个方面: - **标准化的协议架构**:MCP定义了一套标准的通信协议,这使得不同的外部服务可以按照统一的方式接入到大模型中。这种标准化减少了开发者为每个特定数据源编写定制化接口的工作量,从而降低了集成成本[^3]。 - **上下文感知能力**:在多轮对话过程中,MCP能够维护跨工具的上下文信息,确保模型理解当前交互的历史背景。这样可以保持语义连贯性,并允许更复杂的任务执行[^1]。 - **即插即用式的连接器**:MCP支持创建可重用的连接器,这些连接器就像是即插即用的USB设备,一旦配置好就可以被任何兼容MCP大模型使用。这些连接器负责处理特定外部服务的数据交换逻辑。 - **细粒度权限控制**:为了保障安全性,MCP提供了对访问权限的精细控制。它可以在不同级别上设置权限,比如用户级、会话级或请求级,以防止未经授权的数据访问和潜在的安全风险[^3]。 - **任务驱动的交互模式**:MCP不仅支持简单的数据检索,还能够支持更为复杂的工作流,其中包含一系列按顺序执行的任务。这种模式下,大模型可以根据需要调用多个外部工具来完成一个综合性的任务[^1]。 - **动态适应性和扩展性**:MCP的设计允许增外部服务时无需修改现有系统的核心组件。这意味着随着业务需求的变化,的数据源和服务可以很容易地被添加进来而不影响现有的工作流程。 综上所述,MCP通过上述方法实现了大模型外部工具之间高效而安全的数据交互,极大地提升了大模型的应用范围及其在实际场景中的实用性。 ```python # 示例代码 - 模拟MCP连接器的基本结构 class MCPConnector: def __init__(self, service_config): self.service_config = service_config # 包含服务地址、认证信息等配置 def connect(self): # 实现外部服务的具体连接逻辑 pass def query(self, context, parameters): # 根据提供的上下文和参数执行查询 # 返回结果将被送回给大模型 pass def disconnect(self): # 清理连接资源 pass # 使用示例 github_connector = MCPConnector({"url": "https://api.github.com", "token": "your_token"}) github_connector.connect() result = github_connector.query({"issue_number": 123}, {"repo": "octocat/Hello-World"}) github_connector.disconnect() ``` 通过这样的机制,MCP不仅简化了大模型外部世界的交互过程,而且提高了整体系统的稳定性和可维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值