收藏学习!AI Agent项目实践:掌握Prompt设计,让AI成为你的超级生产力工具

“最近做了一些AI Agent的项目实践,其实其中最重要的还是Prompt能力。用好用对Prompt,让AI成为你的超级生产力工具。”

今天从方法、框架的角度聊聊 Prompt,毕竟对于普通的使用者来说用好提示词,才是最大化AI价值的关键所在。

随着 AI 技术的普及,越来越多人开始使用 DeepSeek、豆包等大语言模型。但使用后发现,同样的 AI 工具在不同人手中产生的价值却是天差地别。

有的人让AI生成平淡无奇的内容,而有的人却能让AI成为自己的超级助手!

这其中的差距,很大程度上就体现在提示词的设计能力上。

提示词设计方法

1、角色扮演法

让AI扮演特定角色,可以显著提升回答的专业性和针对性。

比如:
“假设你是一位经验丰富的心理咨询师,请帮我分析一下现代人焦虑的主要来源,并给出5条实用的缓解建议。”

2、结构化模板法

通过提供固定结构,引导AI生成格式规范、内容全面的回答。

比如:
“请按照以下结构介绍Python语言:
1、基本概念与特点
2、主要应用领域
3、学习路径建议
4、常用库和工具
5、未来发展趋势”。

3、分步思维法

将复杂任务拆解为多个步骤,引导AI逐步思考和分析。

比如:
“请逐步分析是否应该辞职创业:
第一步,列出辞职创业的优势和风险
第二步,评估我目前的财务状况和风险承受能力
第三步,考虑市场环境和行业前景
第四步,给出综合建议和注意事项”

4、示例引导法(比较实用)

通过提供示例,让AI理解你期望的输出格式和风格。

比如:
“请模仿下面这段产品描述的写作风格,为我的新产品撰写一段介绍:
[示例文本]
我的产品信息:[你的产品信息]”

5、反向提问法(比较实用,因为很多人不知道怎么问)

通过让AI向你提问来澄清需求,从而获得更精准的结果。

比如:
“在为我制定健身计划前,请先向我提出5个关键问题,以了解我的具体需求和情况。”

6、条件约束法

通过设定限制条件,使输出更加精准和符合要求。

比如:
“用不超过300字,通俗易懂地解释区块链技术,避免使用专业术语,让完全不懂技术的人也能理解。”

主流提示词设计框架

自大模型流行使用后,业界和社区已经总结出了一些备受推崇的、系统化的提示词设计框架。本文先概括性看下,后续对每一个框架进行详细讲述。

1、CRISPE 框架

CRISPE 是一个适合商业和专业场景的完整流程框架。

  • CR(Capacity and Role - 能力和角色):给 AI 设定具体身份,包括其专业领域、能力水平和角色定位,比如 “资深产品经理”“美食博主” 等。
  • I(Insight - 洞察和背景):提供任务相关的背景信息、前因后果,让 AI 了解任务的来龙去脉和关键信息。
  • S(Statement - 声明与任务):直接、清晰地告知 AI 需要完成的具体任务,避免模糊。
  • P(Personality - 个性与风格):设定 AI 输出内容的语气、风格和表达特点,使其符合所扮演角色的特质。
  • E(Experiment - 实验与示例):要求 AI 提供多个不同角度或版本的输出,供选择和优化,增加内容的多样性。

注:E也可以理解为Evaluate(评估),评估输出结果,并根据需要进行迭代和优化。

2、CARE 框架

CARE 框架侧重于为 AI 提供丰富的上下文,以激发其更深层次的推理能力。

  • C(Context - 上下文):提供广泛的背景信息,设定场景。
  • A(Action - 行动):说明你希望AI执行的具体操作。
  • R(Result - 结果):明确描述你期望得到的结果或输出。
  • E(Example - 示例):(可选但强烈推荐)提供一个输入和输出的例子,让 AI 更清晰地理解你的意图。

3、TAG 框架

TAG 框架可以看作是RTF的精简升级版,特别强调“目标”。

  • T(Task - 任务):要完成的具体工作。
  • A(Action - 行动):需要采取的具体动作,如:总结、分析、翻译等。
  • G(Goal - 目标):最终希望达成的目的或效果。

4、思维链(Chain-of-Thought, CoT)

这其实是一种至关重要的技术,通常与其他框架结合使用。

  • 核心思想

要求 AI 将其推理过程一步步地展示出来,而不是直接给出最终答案。这比较适合解决复杂逻辑、数学问题或需要深度分析的任务。

  • 实现方式

可以在提示词中直接加入“让我们一步步地思考”或“请推导出你的答案”等指令。也可以为AI提供几个包含了分步推理过程的示例,让它模仿推理模式。

5、其他框架

其他的框架还有APE、BROKE等等,还有很多其他的,其实这些框架模版只是给的参考思路,能更好的用好大模型而已。

注:

APE:ACTION(⾏动)、PURPOSE(⽬的)、EXPECTATION(期望);

BROKE:BACKGROUND(背景)、ROLE(⻆⾊)、OBJECTIVES(⽬标)、KEY RESULT(关键结果)、EVOLVE(改进)。

实用技巧与注意事项

1、具体大于抽象:避免模糊的描述,提供尽可能具体的信息和要求。

2、上下文很重要:必要时提供相关背景信息,让 AI 更好理解需求。

3、温度值调整:创造性任务提高温度值(0.8-1.0),事实性任务降低温度值(0.2-0.5)。

4、设置限制条件:明确长度、格式、风格等要求,避免 AI 自由发挥过度。

5、安全第一:避免生成有害、偏见或侵权的内容。

掌握提示词的设计不是一蹴而就的,需要不断练习和总结。随着经验的积累,你也会总结出一套自己的方法和技巧,让 AI 真正成为提升工作效率和生活质量的强大工具。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

<think>嗯,用户想了解AI研发工程师的职责、技能要求和经验要求,特别是涉及LLM应用开发、Python、AI框架、Prompt工程、NLP和深度学习这些方面。首先,我需要整理这些信息,确保每个部分都涵盖到位。 首先,岗位职责方面,用户提到LLM应用开发,所以需要包括需求分析、模型微调、系统集成这些点。然后是技能要求,Python肯定是基础,AI框架比如PyTorch和TensorFlow,还有Prompt工程的具体技能,比如设计优化提示词,NLP和深度学习的基础知识也不能少。经验要求方面,可能需要项目经验,尤其是LLM相关的,还有工程化能力,比如部署和优化模型。 接下来要检查是否有引用相关的内容。引用[3]提到了Prompt Engineering中的设计原则,比如给予模型足够的推理时间和详细步骤,这部分可以引用到技能要求的Prompt工程部分。引用[1]提到Prompt Flow工具,可能和开发流程优化相关,可以放在职责或技能里。引用[2]关于本地知识库的自动问答,可能涉及系统集成,所以放在职责部分。 然后要考虑用户可能的深层需求。用户可能想转行或提升技能,所以除了列出要求,可能还需要一些学习建议或职业发展路径。不过用户没有明确问,所以暂时先按问题回答,最后可以考虑在相关问题里加入这些内容。 结构方面,按照职责、技能、经验分点,每个部分再细分小点,保持清晰。每个引用要自然地融入,比如在讲Prompt工程时引用[3],在讲开发工具时引用[1]。确保每个引用标识正确,没有重复或错误。 还要注意用户提到的具体技术点,比如LLM应用开发、Python、AI框架等,确保每个点都有覆盖。例如,在技能要求里,Python需要强调熟练使用库和框架,AI框架部分要提到PyTorch和TensorFlow,以及分布式训练的经验。 经验要求部分,项目经验可能需要区分学术和工业,LLM相关经验要具体,比如微调、部署,工程化能力要包括模型压缩、API开发等。同时,引用[2]中的本地知识库问答可以作为系统集成的例子,引用到经验部分。 最后生成相关问题,要围绕职责、技能、经验展开,可能包括如何学习Prompt工程,LLM应用开发的挑战,职业发展路径等,这样用户能进一步探索需要的信息。 检查是否有遗漏,比如深度学习的基础是否包括常见模型结构,优化算法,或者实践经验。确保每个部分都有足够的细节,同时引用正确,保持回答的真实可靠。</think># AI研发工程师岗位解析 ## 一、岗位职责 1. **LLM应用开发** - 基于大语言模型(如ChatGLM-6B)开发智能对话系统、知识库问答等应用[^2] - 完成需求分析、模型微调(Fine-tuning)、系统集成和性能优化全流程 - 使用Prompt Flow等工具构建LLM应用开发流程[^1] 2. **算法研发与优化** - 设计并实现NLP/深度学习算法(如文本分类、序列标注、文本生成) - 开发Prompt Engineering方案提升模型表现[^3] ```python # 典型Prompt工程示例 def generate_prompt(context, question): return f""" 根据以下上下文回答问题,若信息不足请明确说明: 上下文:{context} 问题:{question} 要求:分步骤解释推理过程,最终结论用【】标注 """ ``` ## 二、核心技能要求 1. **编程能力** - 精通Python及常用库(NumPy/Pandas) - 熟悉PyTorch/TensorFlow等深度学习框架 - 掌握分布式训练、模型压缩等工程化技术 2. **Prompt工程能力** - 熟练使用思维链(Chain-of-Thought)、角色扮演等提示技巧 - 能通过结构化指令引导模型深度思考 3. **专业理论基础** - 深入理解Transformer架构及注意力机制 - 掌握常见NLP任务(如文本表示、序列建模) - 熟悉BERT/GPT等预训练模型原理 ## 三、经验要求 | 经验维度 | 具体要求 | |---------|----------| | 项目经验 | 2年以上LLM相关项目经历,有模型微调/部署经验 | | 工程能力 | 熟悉模型服务化(REST API)、性能监控等生产级部署 | | 领域知识 | 在特定领域(如金融、医疗)有知识图谱构建经验更优 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值