没有人能够证明卡塔兰猜想二次幂情形


 

中国媒体特别是四川大学介绍柯召校长在1965年 柯召证明
卡塔兰猜想的二次情形
方程  x^{^{2}}-y^{b}=1 ,b > 1 只有一个解,即x=3,y=2时,a=2,仅有b=3时有解, 3^{2}-2^{3}=1  。
换一句话说, x^{2}=y^{b}+1  , 或者说  x=\sqrt{y^{^{b}}+1} ,在b>3时没有x的整数解。
需要逐一证明:
y=2时,b=4,5,6,7,.....直至无穷x都无整数解。
y=3时,b=4,5,6,7,.....直至无穷x都无整数解。
y=4时,b=4,5,6,7,.....直至无穷x都无整数解。
..........。
y是一阶变化率,b是二阶变化率。
对于幂运算
底数与指数都是变量时,就是二阶变化率。
并且这是一个属性包含实体结构的命题,属于无法证明的命题。
与费马大定理一样复杂。这是不可能证明的。证明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值