免费下载 |《从零开始大模型开发与微调:基于PyTorch与ChatGLM》PDF

前言

大型模型是深度学习的核心,目前它在人工智能和自然语言处理(NLP)的研究与产业领域中占据着极其重要的地位。

今天给大家带来一本以PyTorch 2.0作为研究和掌握大型模型的基础平台,并以ChatGLM为案例,深入浅出地阐述了大型模型的原理、算法、编程实现、实际应用以及调优技巧,旨在向读者揭开大型模型开发的神秘面纱的书籍——《从零开始大模型开发与微调:基于PyTorch与ChatGLM》
在这里插入图片描述

本书共18章,涵盖了从人工智能与大型模型概述、PyTorch 2.0深度学习环境的构建、PyTorch 2.0的基础学习、深度学习基础算法的详解、使用PyTorch进行MNIST数据集分类的实战、PyTorch中的数据处理与模型展示、ResNet网络的实战应用、词嵌入的趣味探索、基于PyTorch循环神经网络的中文情感分析实战、自然语言处理中的编码器技术、以及预训练模型BERT等多个方面的内容。

下载当前版本: 完整版本链接获取,可以V扫描下方二维码免费领取

## 作者介绍:

王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。

著有《PyTorch 2.0深度学习从零开始学》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》等。

目 录:

第1章 新时代的曙光—人工智能与大模型

在这里插入图片描述

第2章 PyTorch 2.0深度学习环境搭建

第3章 从零开始学习PyTorch 2.0

第4章 一学就会的深度学习基础算法详解

第5章 基于PyTorch卷积层的MNIST分类实战

在这里插入图片描述

第6章 可视化的PyTorch数据处理与模型展示

第7章 ResNet实战

第8章 有趣的词嵌入

第9章 基于循环神经网络的中文情感分类实战

第10章 从零开始学习自然语言处理的编码器

在这里插入图片描述

第11章 站在巨人肩膀上的预训练模型BERT

第12章 从1开始自然语言处理的解码器

第13章 基于PyTorch 2.0的强化学习实战

第14章 ChatGPT前身—只具有解码器的GPT-2模型

第15章 实战训练自己的ChatGPT

在这里插入图片描述

第16章 开源大模型ChatGLM使用详解

第17章 开源大模型ChatGLM 高级定制化应用实战

第18章 对训练成本上亿美元的ChatGLM进行高级微调

在这里插入图片描述

下载当前版本: 完整版本链接获取,可以V扫描下方二维码免费领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值