谷歌放大招!RAG 技术已死?

在这里插入图片描述

谷歌最近发布了 Gemini 2.0 Flash 版本模型,这可能是当前性价比最高的 AI 模型了。

这个模型除了性价比之外,还有何魔力呢?为什么我会说 RAG 即将被淘汰呢?

RAG 究竟是什么?

RAG 全称是 Retrieval-Augmented Generation,即检索增强生成技术。这项技术常被用于帮助 ChatGPT 等 AI 模型访问其原始训练数据之外的外部信息。

你可能在不知不觉中就体验过它,用过 Perplexity 或其他 AI 搜索吗?

当它们边回答问题边检索资料时,那就是 RAG 在工作。

甚至当你向 ChatGPT 上传文件并提问时,同样运用了RAG技术。

RAG 之所以重要,是因为早期AI模型的记忆容量极其有限

回到2023年初,主流模型只能处理约4,000个token(相当于6页文本)。

这意味着面对海量信息时,必须通过分块切割、向量化存储(嵌入技术/向量数据库/分块处理等)等复杂操作,

再按需检索相关片段。

但如今?

这套流程可能可以丢进历史了。

传统RAG处理流程图

传统RAG处理流程图

Gemini 2.0 Flash 登场

虽然当前所有 AI 模型都能处理大量信息,但 Gemini 2.0有何特别?

它能一次性处理100万token

某些模型甚至达到200万token

这意味着你不再需要切分数据成零碎片段,而是可以将完整文档直接投喂给模型,让它整体推理

更关键的是 — 新一代模型不仅记忆容量更大准确性也显著提升

谷歌最新模型的幻觉率(即胡编乱造的概率)创历史新低。

仅此一点就带来质的飞跃。

Gemini 2.0直读文档处理流程

Gemini 2.0直读文档处理流程

范式变革的威力

举个真实案例:假设你有一份长达50,000 token的财报电话会议记录(这已经很大了)。

若采用传统 RAG 方案,你需要将其切割成 512 token 的小块存储。

当用户提问时,系统需要检索相关片段再输入模型。

问题在于:模型无法进行全局推理

比如当用户问:

“该公司今年营收与去年相比如何?”

若仅提供零散文本块,答案必然不准确。

但若将完整记录输入 Gemini 2.0 呢?

它能通览全局 — 从 CEO 开场白到核心数据,再到分析师问答环节,都能给出更全面精准的解析。

因此当我说 RAG 已死 时,实际是指:

传统 RAG 方法论(将单个文档切分处理)已过时

你不再需要这套繁琐流程。

直接把完整文档交给大模型即可。

但 RAG 并未彻底消亡

有人提出:

“如果有100,000份文档怎么办?”

问得好!

面对超大规模数据集 - 比如苹果过去十年的所有财报,这仍需筛选机制。

但方法论已革新,我的新方案是:

  1. 先检索相关文档(例如仅提取2020-2024年苹果财报)

  2. 将完整文档并行输入AI模型

  3. 整合各文档输出得出最终结论

相比传统分块法,这种方案准确度更高。

让 AI 在完整文档层面进行推理,而非处理零散的片段数据。

下图展示了现代方案处理海量文档的流程

现代方案处理海量文档流程

现代方案处理海量文档流程

核心启示

若你正在开发 AI 产品或进行实验,请记住大道至简

多数人容易陷入过度设计的陷阱。

直接向 Gemini 2.0(或任何大上下文窗口 AI 模型)上传完整文档让模型自主推理

明年技术会再次迭代吗?很有可能。

AI 模型正朝着更便宜、更智能、更快速的方向发展。

但当下?传统 RAG 方法论可以退场了。

把你的数据灌入谷歌新模型,就能以更简捷的方式获得更优质的结果。

如果你现在就有需要分析的文档,不妨立即尝试。

或许会惊喜地发现:一切竟变得如此简单。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### RAGFlow 对定制化工作流的支持 RAGFlow 是一种用于实现检索增强生成(Retrieval-Augmented Generation, RAG)的工作框架。此框架不仅支持标准的 RAG 实现,还提供了灵活性让用户能够自定义整个处理流程[^1]。 通过调整不同组件之间的交互方式以及引入新的模块,用户可以构建满足特定需求的独特管道。具体来说,在编码层面,可以通过继承基础类并重写相应的方法来扩展功能;也可以利用配置文件指定不同的参数设置,从而改变默认行为模式。以下是展示如何创建一个简单的自定义 RAG 流程的例子: ```python from ragflow.base import BaseRetriever, BaseGenerator import ragflow.utils as utils class CustomRetriever(BaseRetriever): def __init__(self, config_path=None): super().__init__() self.config = utils.load_config(config_path) def retrieve(self, query): # 自定义检索逻辑 pass class CustomGenerator(BaseGenerator): def generate(self, context, history=[]): # 自定义生成逻辑 pass if __name__ == "__main__": retriever = CustomRetriever('path/to/config') generator = CustomGenerator() user_query = "What is the capital of France?" retrieved_docs = retriever.retrieve(user_query) response = generator.generate(retrieved_docs) print(response) ``` 上述代码片段展示了如何基于 `BaseRetriever` 和 `BaseGenerator` 创建两个新类——`CustomRetriever` 及其对应的生成器 `CustomGenerator` 来实现个性化的检索与生成过程。这表明 RAGFlow 的设计考虑到了高度可配置性和适应性,使得开发人员可以根据实际应用场景灵活调整各个组成部分的功能特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值