1.背景
Ollama和llama.cpp都是比较常见的本地部署大模型的工具,借助他们普通的笔记本也可以跑大模型。 Ollama和llama.cpp名字里面都带了个llama容易造成选择困难。本文希望能借助一个实际的例子,帮助你快速做出选择。
先说结论:如果只是本地部署不考虑性能的话闭眼选Ollama,如果要做"极致优化性能为王"就选llama.cpp.
后文会分别用Ollama和llama.cpp部署DeepSeek-R1 32B的实践说明如何得出这个结论的。
2.Ollama和llama.cpp的关系
Ollama和llama.cpp里面都带了个llama,就是我们熟悉的Meta开源的llama模型。 起初Ollama和llama.cpp都是用来服务llama的, 后来就独立发展成了两个独立的软件了, 他们都有自己的社区。
这里想重点说明的是, Ollama用llama.cpp作为底层实现模型推理的。这一点可以从Ollama的源码中得到答案:
Ollama代码的子目录llama里面就是包含了llama.cpp的代码, 并且通过llama.go文件将c++的接口导出到golang空间使用了。因此, 从源码的角度就可以认为llama.cpp就是Ollama的底层。
3.评测Ollama和llama.cpp
llama.cpp推荐的模型格式是GGUF, 为了公平让Ollama也使用同一个GGUF的模型。 我这里实验使用的是:DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf 模型。
3.1 Ollama部署DeepSeek-R1 32B
Ollama默认是不支持GGUF格式的,需要用Modelfile转换以下。步骤如下:
- 创建一个名为deepseek-r1-32b.gguf文件, 内容如下:
FROM ./bartowski/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf
- 执行如下命令:
ollama create my-deepseek-r1-32b-gguf -f .\deepseek-r1-32b.gguf
就可以DeepSeek-R1 32B的GGUF模型导入到Ollama使用了
- 执行命令启动该模型:
ollama run my-deepseek-r1-32b-gguf:latest
这时可以正常加载了, 通过ollama ps命令可以看到进程信息如下:
NAME ID SIZE PROCESSOR UNTIL
my-deepseek-r1-32b-gguf:latest ad9f11c41b7a 25 GB 87%/13% CPU/GPU 3 minutes from now
可以看到,整个模型有25G, 87%加载到了CPU内存空间,13%加载到了GPU空间。实际使用发现推理是很慢的,但是还是可以用的。
3.2 llama.cpp部署DeepSeek-R1 32B
我用的是gitbash,因此llama.cpp的安装参考的是 参考:
https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md#git-bash-mingw64
你也可以根据自己的情况选择正确的参考内容进行安装。安装完后,用如下命令执行:
build/bin/Release/llama-cli -m "/path/to/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf" -ngl 100 -c 16384 -t 10 -n -2 -cnv
结果如下:
ggml_vulkan: Device memory allocation of size 1025355776 failed.
ggml_vulkan: vk::Device::allocateMemory: ErrorOutOfDeviceMemory
llama_model_load: error loading model: unable to allocate Vulkan0 buffer
llama_model_load_from_file_impl: failed to load model
common_init_from_params: failed to load model 'D:/llm/Model/bartowski/DeepSeek-R1-Distill-Qwen-32B-Q5_K_M.gguf'
main: error: unable to load model
直接就报错了。
4.为什么llama.cpp部署不了
到这里,相信你知道怎么选型了。
不过,既然我们已经知道了llama.cpp是Ollama的底层,那为什么llama.cpp的表现反而不如Ollama呢?这个就要说到Ollama自己做的一个优化了, 也就是llama.cpp的ngl参数。用llama.cpp部署的时候ngl参数是写死的,而Ollama则是自己根据模型文件动态计算的ngl参数。
ngl参数的意思是将多少层加载到GPU去,我笔记本的GPU是4G显存,肯定不能将25G的DeepSeek加载进去的。因此llama.cpp的-ngl 100的用法肯定是不对的(100层基本就是全加载到GPU了),但是对于只有命令行的llama.cpp你也不好评估出-ngl应该取多少才能成功部署。
那Ollama是怎么做的呢?答案在Ollama的源码memory.go里面。这个文件里面的如下函数实现了根据模型计算ngl值的功能:
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64
// Graph size when all layers are offloaded, applies to all GPUs
var graphFullOffload uint64
// Final graph offload once we know full or partial
var graphOffload uint64
...
限于篇幅我就没有完整列出这个代码了,感兴趣的可以自己看下。正是这个函数让Ollama动态的计算了ngl的值,从而做出了“87%加载到了CPU内存空间,13%加载到了GPU空间”的动作,最终成功部署DeepSeek-R1 32B的模型。 实话实说, 普通的笔记本能部署32B的模型真的是太强了,出乎意料。
5.效果
同样还是让它做前几天王毅外长交给DeepSeek的任务:翻译“他强任他强,清风拂山岗;他横任他横,明月照大江”。
结果有点奇怪, 虽然也给出了部分翻译, 但是它理解错了任务。可能和资源首先Ollama做了其他的什么参数优化吧。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
