前言
Qwen3(通义千问3)是阿里云Qwen团队推出的新一代开源大语言模型系列,涵盖密集模型和混合专家(MoE)模型多个规模。本次发布共开源了 6 个密集模型和 2 个 MoE 模型,参数量从 6亿 到 2350亿 不等。其中密集模型包括约0.6B、1.7B、4B、8B、14B和32B参数版本,MoE模型包括总参数约30B(激活参数3B)和235B(激活参数22B)的两种。所有模型均采用Apache 2.0开源许可,开发者可自由下载使用。
Qwen3 模型简介
亮点一 混合推理模式
Qwen3 支持在一个模型中无缝切换“思考模式”和“非思考模式”。在处理复杂逻辑推理、数学计算或代码生成等任务时,模型会进入“思考模式”逐步推理;而针对一般对话需求则采用高效的“非思考模式”,快速给出回答。这种“混合”架构让模型在复杂任务上能够自行检查和推理(类似OpenAI的 o3模型思路),提升准确性,但在简单任务上仍保持高速响应。
Qwen3 是否开启推理模式需要用户主动控制,而非完全自主决定。它提供了两种机制供用户选择:
硬开关机制
用户可通过设置
enable_thinking=True-
或
False
显式启用或关闭推理模式
;
软开关机制
在已启用推理模式的前提下,用户可通过特定指令(如
/think
和
/no
)临时切换模式。
/think :强制进入深度推理模式(适合复杂逻辑、多步骤计算等任务)
/no_think:快速切换至轻量模式(适用于简单问答、低延迟需求场景)
亮点二 推理能力大幅度提升
相较前代模型,Qwen3 的推理能力大幅增强。在数学、代码和常识推理方面,Qwen3在“思考模式”下超越了此前内部基准模型,在“非思考模式”下也****胜过 Qwen2.5 系列的Instruct模型。同时,通过监督微调和人类反馈RLHF,Qwen3 拥有更优的人类偏好对齐,在创意写作、角色扮演、多轮对话和指令遵循等方面表现出色,能带来更加自然、生动的对话体验。
大部分 Qwen3 模型支持长上下文输入,最大上下文长度可达 128K tokens。这意味着模型可以高效处理超长文档和多轮对话,比常规的4K或8K上下文窗口长得多。较小模型(如0.6B、1.7B参数版)默认支持32K上下文,中大型模型(8B及以上)则扩展到128K,从而在长文本摘要、长对话等场景下表现更佳。
Qwen3 在大规模多语种语料上进行预训练,支持119种语言和方言,覆盖中英双语在内的广泛语言环境。据官方介绍,Qwen3 的预训练语料规模接近 36万亿 tokens,约为上一代 Qwen2.5 的两倍。数据来源包括互联网网页、PDF文档等,并借助 Qwen2.5-VL 等模型提取清洗文本,同时合成了额外的数学和代码数据作为补充。如此海量且多样的训练数据,使Qwen3在中英文等多语言理解、翻译和知识覆盖上都有强大表现。
值得一提的是,Qwen3 引入的架构和训练改进极大提升了“小模型”的效率:官方指出区区4B参数的 Qwen3 模型,其性能已可媲美上一代72B参数的 Qwen2.5 模型*。*
这对本地部署非常有利,因为用户在资源有限的设备上也能获得过去需要超大模型才能实现的能力。
Qwen3 模型使用方法
一、在线使用
通义AI助手:
https://www.tongyi.com/qianwen/spm=5176.28326591.0.0.40f76ee1zBYunq
Chat Qwen:
https://chat.qwen.ai/
二、API调用
阿里云百炼平台
https://bailian.console.aliyun.com/console?tab=model#/model-market
在python中的调用方法:
import os
from openai import OpenAI
client = OpenAI(
# 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
# 模型列表:https://help.aliyun.com/zh/model-studio/getting-started/models
model="qwen3-235b-a22b", # 改这里选模型型号
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "你是谁?"},
],
# Qwen3模型通过enable_thinking参数控制思考过程(开源版默认True,商业版默认False)
# 使用Qwen3开源版模型时,若未启用流式输出,请将下行取消注释,否则会报错
# extra_body={"enable_thinking": False},
)
print(completion.model_dump_json())
**三、本地部署(**以ollama为例)
打开:https://ollama.com/,点击Models;
找到qwen3点开
点击右上角Download先下载ollama
等ollama安装完成后,打开命令提示符,并输入你要运行的模型指令
注意,此命令默认运行 GGUF格式Q4_K_M量化模型版本。
命令结束后,之后就可以运行模型并进行聊天了。
第一种方式是直接在终端使用:
如果想查看所有可以本地部署的不同参数量和量化精度的模型,可以点击Tags,同样的,将命令中的qwen3:4b改成对应的模型名称即可。
但是,在终端直接使用不够人性化,因此推荐大家搭配相关软件使用,
下面介绍第二种:在cherry studio软件使用本地模型的方案:
1、下载cherry studio软件
https://www.cherry-ai.com/
2、配置模型
打开软件,点击左下角设置-模型服务-ollama-管理
再点击默认模型,将默认助手模型选择成刚才配置的本地模型
最后,打开左上角的助手,添加新话题,就可以进行聊天了。
最后的最后
感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。
为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。
这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。
这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
