LLM大模型微调心得:全面经验总结与技巧分享

导读

模型越大对显卡的要求越高,目前主流对大模型进行微调方法有三种:Freeze方法、P-Tuning方法和Lora方法。本文总结了作者在ChatGLM-6B模型微调的经验,并汇总了目前各类开源项目&数据。

写在前面

大型语言模型横行,之前非常焦虑,现在全面拥抱。目前也有很多开源项目进行大模型微调等,笔者也做了一阵子大模型了,特此来介绍一下ChatGLM-6B模型微调经验,并汇总了一下目前开源项目&数据。笔者与很多人微调结论不同,本人在采用单指令上进行模型微调,发现模型微调之后,「并没有出现灾难性遗忘现象」

项目地址:https://github.com/liucongg/ChatGLM-Finetuning

ChatGLM-6B模型微调

模型越大对显卡的要求越高,目前主流对大模型进行微调方法有三种:Freeze方法、P-Tuning方法和Lora方法。笔者也通过这三种方法,在信息抽取任务上,对ChatGLM-6B大模型进行模型微调。为了防止大模型的数据泄露,采用一个领域比赛数据集-汽车工业故障模式关系抽取(https://www.datafountain.cn/competitions/584),随机抽取50条作为测试集。

详细代码见上面的GitHub链接,并且也被ChatGLM官方收录。

Freeze方法

Freeze方法,即参数冻结,对原始模型部分参数进行冻结操作,仅训练部分参数,以达到在单卡或不进行TP或PP操作,就可以对大模型进行训练。

微调代码,见finetuning_freeze.py,核心部分如下:

for name, param in model.named_parameters():  
    if not any(nd in name for nd in ["layers.27", "layers.26", "layers.25", "layers.24", "layers.23"]):  
        param.requires_grad = False  


针对模型不同层进行修改,可以自行修改。训练代码均采用DeepSpeed进行训练,可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text等,可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_freeze.py --num_train_epochs 5 --train_batch_size 2  


三元组抽取的推理代码,见predict_freeze.py,其他任务可以根据自己的评价标准进行推理预测。

PT方法

PT方法,即P-Tuning方法,参考ChatGLM官方代码(https://github.com/THUDM/ChatGLM-6B/blob/main/ptuning/README.md) ,是一种针对于大模型的soft-prompt方法。

  • P-Tuning(https://arxiv.org/abs/2103.10385),仅对大模型的Embedding加入新的参数。

  • P-Tuning-V2(https://arxiv.org/abs/2110.07602),将大模型的Embedding和每一层前都加上新的参数。

微调代码,见finetuning_pt.py,核心部分如下:

config = ChatGLMConfig.from_pretrained(args.model_dir)  
config.pre_seq_len = args.pre_seq_len  
config.prefix_projection = args.prefix_projection  
  
model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir, config=config)  
  
for name, param in model.named_parameters():  
    if not any(nd in name for nd in ["prefix_encoder"]):  
        param.requires_grad = False  


当prefix_projection为True时,为P-Tuning-V2方法,在大模型的Embedding和每一层前都加上新的参数;为False时,为P-Tuning方法,仅在大模型的Embedding上新的参数。

可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、pre_seq_len、prompt_text等, 可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_pt.py --num_train_epochs 5 --train_batch_size 2 --pre_seq_len 16  


三元组抽取的推理代码,见predict_pt.py,其他任务可以根据自己的评价标准进行推理预测。

Lora方法

Lora方法,即在大型语言模型上对指定参数增加额外的低秩矩阵,并在模型训练过程中,仅训练而外增加的参数。当“秩值”远小于原始参数维度时,新增的低秩矩阵参数量很小,达到仅训练很小的参数,就能获取较好的结果。

  • Lora论文:https://arxiv.org/abs/2106.09685

  • 官方代码:https://github.com/microsoft/LoRA

  • HuggingFace封装的peft库:https://github.com/huggingface/peft

微调代码,见finetuning_lora.py,核心部分如下:

model = ChatGLMForConditionalGeneration.from_pretrained(args.model_dir)  
config = LoraConfig(r=args.lora_r,  
                    lora_alpha=32,  
                    target_modules=["query_key_value"],  
                    lora_dropout=0.1,  
                    bias="none",  
                    task_type="CAUSAL_LM",  
                    inference_mode=False,  
                    )  
  
model = get_peft_model(model, config)  


可设置参数包含train_path、model_dir、num_train_epochs、train_batch_size、gradient_accumulation_steps、output_dir、prompt_text、lora_r等,可根据自己的任务配置。

CUDA_VISIBLE_DEVICES=0 deepspeed finetuning_lora.py --num_train_epochs 5 --train_batch_size 2 --lora_r 8  


三元组抽取的推理代码,见predict_lora.py,其他任务可以根据自己的评价标准进行推理预测。

注意:对于结果需要保持一致的任务(即关掉dropout,解码关掉do_sample),需要保存模型的adapter_config.json文件中,inference_mode参数修改成false,并将模型执行model.eval()操作。主要原因是chatglm模型代码中,没有采用Conv1D函数。

三元组抽取实验结果

  • 模型训练时,最大长度为768,Batch大小为2,训练轮数为5,fp16训练,采用DeepSpeed的Zero-1训练;

  • PT为官方的P-Tuning V2训练方法,PT-Only-Embedding表示仅对Embedding进行soft-prompt,Freeze仅训练模型后五层参数,Lora采用低秩矩阵方法训练,秩为8;

  • 由于之前训练PT在48G-A40显卡上会出现OOM,因此之前进行PT实验时对模型开启了gradient_checkpointing_enable,使得模型显存占用变小,但训练时长增加。

  • 训练示例:

prompt_text:你现在是一个信息抽取模型,请你帮我抽取出关系内容为\"性能故障\", \"部件故障\", \"组成\"和 \"检测工具\"的相关三元组,三元组内部用\"_\"连接,三元组之间用\\n分割。文本:  
输入:故障现象:发动机水温高,风扇始终是低速转动,高速档不工作,开空调尤其如此。  
输出:发动机_部件故障_水温高\n风扇_部件故障_低速转动  


时间换空间,可用很好的解决显卡的资源问题,简单玩玩还可以,如果想要模型达到最优效果或可用快速看到效果,还不如租张A100卡,快速实验,推理阶段再用自己的小破卡。

笔者找到一家新的算力平台-揽睿星舟,单张A100仅要6.4元/小时,我翻了一圈,算是便宜的了(反正比AutoDL便宜一点,便宜一点是一点吧)。

下面实验结果均是在租的80G-A100上进行的实验,与Github里用的A40的实验结果会有些差异,主要在训练时长(纯训练速度,剔除模型保存的时间)。说实话,真的要训练一个大模型,多个A100是必不可少的,可以减少很多模型并行的操作,效果上也更好把控一些。

微调方法PT-Only-EmbeddingPTFreezeLora
显卡占用37G56G24G39G
总参数6.259B7.211B6.255B6.259B
可训练参数占比0.0586%13.26%16.10%0.0586%
训练耗时20min52min46min25min
测试结果F10.00.62830.56750.5359

结果分析:

  • 效果为PT>Freeze>Lora>PT-Only-Embedding;

  • 速度为PT-Only-Embedding>Lora>Freeze>PT;

  • PT-Only-Embedding效果很不理想,发现在训练时,最后的loss仅能收敛到2.几,而其他机制可以收敛到0.几。分析原因为,输出内容形式与原有语言模型任务相差很大,仅增加额外Embedding参数,不足以改变复杂的下游任务;

  • PT方法占用显存更大,因为也增加了很多而外参数;

  • 测试耗时,采用float16进行模型推理,由于其他方法均增加了额外参数,因此其他方法的推理耗时会比Freeze方法要高。当然由于是生成模型,所以生成的长度也会影响耗时;

  • 模型在指定任务上微调之后,并没有丧失原有能力,例如生成“帮我写个快排算法”,依然可以生成-快排代码;

  • 由于大模型微调都采用大量instruction进行模型训练,仅采用单一的指令进行微调时,对原来其他的指令影响不大,因此并没导致原来模型的能力丧失;

  • 上面测试仅代表个人测试结果。

很多同学在微调后出现了灾难性遗忘现象,但我这边并没有出现,对“翻译任务”、“代码任务”、“问答任务”进行测试,采用freeze模型,可以用test_forgetting.py进行测试,具体测试效果如下:

  • 翻译任务

  • 代码任务

  • 问答任务

后面会把生成任务、分类任务做完,请持续关注Github,会定期更新。(太忙了,会抓紧时间更新,并且官方代码也在持续更新,如遇到代码代码调不通的情况,请及时联系我,我在github也给出了我的代码版本和模型版本)

中文开源大模型&项目

虽然出来很多大模型,但Open的&中文可直接使用的并不多,下面对中文开源大模型、数据集和项目进行一下汇总。

中文开源大模型

直接可微调,无需指令增量训练:

  • ChatGLM-6B:https://huggingface.co/THUDM/chatglm-6b

  • ChatYuan-large-v2:https://huggingface.co/ClueAI/ChatYuan-large-v2

原始模型多语言or英文,需要中文指令数据集增量训练:

  • BloomZ:https://huggingface.co/bigscience/bloomz

  • LLama:https://github.com/facebookresearch/llama

  • Flan-T5:https://huggingface.co/google/flan-t5-xxl

  • OPT:https://huggingface.co/facebook/opt-66b

中文开源指令数据

下面中文指令集,大多数从Alpaca翻译而来,请看下面项目中data目录。目前通过ChatGPT或者GPT4作为廉价标注工为自己的数据进行数据标注一个不错的思路。

  • [1]:https://github.com/LC1332/Chinese-alpaca-lora

  • [2]:https://github.com/hikariming/alpaca_chinese_dataset

  • [3]:https://github.com/carbonz0/alpaca-chinese-dataset

  • [4]:https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM

  • [5]:https://github.com/LianjiaTech/BELLE

  • [6]:https://huggingface.co/datasets/JosephusCheung/GuanacoDataset

开源项目

总结下面较火的开源项目:

  • BELLE:https://github.com/LianjiaTech/BELLE

  • ChatGLM:https://github.com/THUDM/ChatGLM-6B

  • Luotuo-Chinese-LLM:https://github.com/LC1332/Luotuo-Chinese-LLM

  • stanford_alpaca:https://github.com/tatsu-lab/stanford_alpaca

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值