在这个已经被大模型包围的时代,不了解一点大模型的基础知识和相关概念,可能出去聊天都接不上话。刚好近期我也一直在用ChatGPT和GitHub Copilot,也刚好对这些基础知识很感兴趣,于是看了一些科普类视频和报告,做了如下的整理总结,分享与你!
一句话描述GPT
GPT全称Generative Pre-Training Transformer,即三个关键词:生成式 预训练 变换模型。
GPT模型通过在大量数据上学习到的语言模式,预测下一个字(token),生成自然语言文本。
大模型的6大关键技术
- 大模型
类似于人类的大脑,通过思考和规划来完成任务;
- Prompt(提示词工程)
类似于人类的沟通,上级通过布置任务来让下级完成一项任务;
- RAG(检索增强生成)
类似于人类想要暂时完成一件任务,但是这件任务暂时不会做。例如马上要大学期末考试了,我们需要临时抱佛脚突击一周,以求得考试及格分数,但是考完试以后,这些知识就忘得一干二净了。又或者说它也类似于大学期末的开卷考试,反正知识点都在书里,你平时都没学过,得先找一找,找到了就把相关答案写在试卷上,考完了还是忘得一干二净,但是你的目标达到了:考试及格60分万岁!
- Fine-tunig(微调)
类似于人类想要彻底学会一个技能,例如想要学会大模型的技术,我们需要通过系统的培训以及通过实战去真正的掌握大模型技术。
- Function Calling(函数调用)
类似于人类使用工具完成一件任务,例如想要查询成都的天气情况,我们要么直接打开天气预报的App,要么直接在百度上搜索,总之是通过工具来完成这件事。
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈
- Agent
类似于人类通过沟通、分工和协作来完成一件复杂的任务,通常会结合使用到上面提到的五个技术来完成任务,而且大模型时代的Agent也不是单兵作战而是多个Agent之间合作来完成任务。例如想要开发一个客服项目,需要产品经理Agent、架构师Agent、开发者Agent、测试者Agent、运维Agent 和 项目管理Agent 像人类一样去沟通协作,最后才能把这个项目自动地完成。
知识问答的3种主要方式
(1)大模型直答
最常见的方式:直接向LLM提问,LLM给出回答。
(2)大模型微调(Fine-Tuning)
首先,将企业私有知识加给通用大模型进行微调形成私有大模型;然后,再将问题给到私有大模型进行回答。
(3)大模型RAG(检索增强生成)
首先,对企业的知识库进行检索得到相关的知识片段;然后,将知识片段和原问题组合成新的提示词发给通用大模型得到回答;
3种方式的效果对比:
方式 | 外在幻觉 | 领域知识 | 实时信息 | 可溯源 | 成本 |
直答 | 多 | 无 | 无 | 无 | 低 |
微调 | 中 | 有 | 无 | 无 | 高 |
RAG | 少 | 有 | 有 | 有 | 低 |
总结:在企业落地知识问答库时,如果为了追求成本和回答准确度,推荐使用RAG方案。
AI Agent到底是什么?
首先,在产品层面:AI Agent是AGI时代新的应用形态;
这其实是应用形态的演进:在AGI时代之前是移动互联网时代,它的产品形态是APP。在进入AGI时代后,产品形态变为了AI Agent。
未来现有的部分高级程序员写的应用就不再会是App,而是AI Agent了!
其次,在技术层面:面向过程架构 → 面向目标架构 的转变(也称为:软件架构的范式迁移);
比如,在App时代写一个用户系统,需要把整个用户从注册到登录再到注销,一步一步地把整个流程结合if-else把它开发出来。这个生成的过程我们叫做面向过程的架构,需要预定义指令、逻辑和规则。
但是,在AI Agent时代,很多情况下不需要把这些指令一个一个地指出来,只需要一句话就行了,比如说提供一个prompt“请帮我完成一个用户系统,它包含用户注册、登录、查询等功能”,然后大模型就会帮你去完成。这个生成的过程我们叫做面向目标的架构,具有目标导向和动态规划的特点,由AI Agent自主生成。
大模型和Agent有啥区别?
Agent会在大模型的推理结果基础之上,使用一些工具(如调用API)完成某个特定的任务,这个技术也被称为Function Calling(函数调用)。
当下大模型的参数量提升AI Agent的理解力和泛化能力,使其能够更好地处理多种任务和上下文信息,这增强了AI代理的自然语言处理能力,从而提供更加个性化、连贯的交互体验,是当下Agent的构建关键!
总结:大模型时代下的 AI Agent = LLM × (规划+记忆+工具+行动)
AI Agent的应用场景通常与特定任务或环境紧密相关。例如,在智能家居系统中,AI Agent可以根据用户的生活习惯和偏好自动调节家庭设备的运行状态。在游戏中,AI Agent能够提供具有挑战性的对手或复杂的游戏环境动态。
Agent架构的核心流程
Agent架构有三个重要的模块:规划****模块(Planning)、执行模块(Action) 和 观察****模块(Observation),如下图所示:
举个例子,假设我们有一个prompt“请用python画一个圆心”。
首先,在规划模块,Agent会将这个需求拆解为三个子项:写Python代码、调用IPython解释器、调用Docker运行环境;
其次,在执行模块,Agent会分别执行拆解的事项,也就是去调用各种工具;
最后,在观察模块,Agent会对每一步的执行结果做观测,如果check完毕没问题,就给到用户最终的答案。如果觉得有问题,比如执行的过程中出现了Timeout之类的错误,就会做一些Retry的操作。如果Retry次数超过了最大重试次数,这时候就可能会把这个进程Kill掉,然后重新进入规划模块重新规划。
在这三个模块或者说能力中,最重要的当属规划模块!
大模型和程序员的关系
(1)目前ChatGPT对程序员到底有哪些实质性的帮助?
第一点:Code Review
ChatGPT能够理解代码,并针对代码给出针对性的建议和优化方案;
第二点:写测试用例、单元测试、集成测试等,这些ChatGPT都很擅长!
第三点:对线上问题的定位和分析
线上问题的各种疑难杂症,ChatGPT都能胜任!
第四点:SQL的翻译
实现两种数据库的SQL语言转换,比如将Oracle的SQL脚本转换成MySQL的SQL脚本。
(2)有了AI编程,还需要程序员吗?
第一,在冯诺依曼架构体系下,程序需要的是确定性计算;
第二,由于大模型本身的概率性,目前大模型生成的代码还具备一定的随意性和不确定性;
第三,目前大模型更擅长的是一些抽象层次比较低的工作,比如一段代码或一个算法的实现,写一个单元测试等等。而一些抽象层次比较高的工作,比如需求分析、架构设计、领域设计、架构选型等,这些工作反而是大模型不擅长的,而这些工作是比较具备有竞争力的,这恰恰是一些高级程序员以及系统架构师的价值所在。
(3)应用实践AIGC有几层境界?
第一层境界:简单对话;
通过ctrl-c/v出结果,人人都会。
第二层境界:系统掌握Prompt Engineering;
通过系统掌握好提示词工程,真正赋能工作提效。
第三层境界:将AIGC融入业务流程,指挥AIGC完成复杂的任务;
通过掌握AIGC的技能,并完成业务领域知识的深入结合。
第四层境界:拥有自己的大模型;
熟悉大模型的架构原理,通过开源大模型微调,最好能够拥有一定的行业数据壁垒。
第五层境界:参与设计训练大模型;
比如从事ChatGPT等研发工作。
目前,Edison还处于第二层即提示词工程,我们整理了很多针对SDLC(软件开发生命周期)过程中的经典场景的提示词模板来做提效。
那么,你处于哪一层呢?
(4)如何掌握AI大模型开发技能?
第一步:掌握开发AGI时代新应用程序的技能;
比如:大模型应用内核、LangChain开发框架、向量数据库等;
第二步:搞定开发企业级AI Agent的应用技能;
比如:AI Agent、大模型缓存、算力等;
第三步:驾驭开发企业级专有大模型的技能;
比如:RAG、微调等;
第四步:深入应用大模型技术成为开发大师;
比如:大模型预训练、LLMOps等;
小结
大模型应用开发学习实践之路漫漫,我们IT开发者也会逐渐从Application的开发转向Agent的开发的范式的转变,一起加油吧!
零基础如何学习AI大模型
领取方式在文末
为什么要学习大模型?
学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。
大模型典型应用场景
①AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
②AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
③AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
④AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。
…
这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。
学习资料领取
如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈