摘要:我们经常会用dify 来实现明确场景的agent或者工作流,但是一些复杂场景的时候我们就需要使用多agent架构,本文介绍了agent和workflow的区别以及在dify中如何实现多agent架构。
- Agent 与 Workflow:不可不知的差异
- 在 Workflow 中调用 Agent:关键的 Agent 节点
- dify中如何在chatflow中配置agent
01 Agent 与 Workflow:不可不知的差异
在深入探索 Dify 对多 Agent 架构的支持之前,我们先来明确一下 Agent 和 Workflow 这两个关键概念之间的区别,这有助于我们更好地理解后续的技术实现与应用。
Agent:自主智能的行动者
Agent,即智能体,是一种具备自主决策能力的智能实体,它通常基于 AI 技术,如机器学习、强化学习等得以实现。其核心特点十分显著:
动态决策:Agent 不依赖于固定的步骤和流程,而是根据实时感知到的环境信息进行推理和判断,进而做出动态的决策。例如在智能客服场景中,面对用户询问 “某款商品什么时候有货” ,智能客服 Agent 能快速分析问题,查询商品库存数据库,然后准确回复用户预计的到货时间。如果用户问题较为复杂,它还能根据对话情况,灵活转接至最合适的人工客服。
环境交互:可以与所处的环境进行交互,通过传感器等获取环境数据,同时通过执行器对环境产生影响。以自动驾驶汽车中的 Agent 为例,它通过摄像头、雷达等传感器感知路况、交通信号等环境信息,然后控制汽车的行驶速度、方向等,对环境做出反馈 。
目标导向:被赋予明确的目标,其所有的感知、决策和行动都是为了实现这些目标。比如,一个投资 Agent 的目标可能是在一定风险范围内实现投资收益最大化,它会实时分析市场数据,做出买卖决策以朝着目标前进。
Workflow:预定义任务序列的流程化管理
Workflow,也就是工作流,是指一系列按照预定义规则和顺序执行的任务或步骤,常用于描述业务流程或操作的结构化执行路径。其核心特点包括:
固定流程: 任务的执行顺序和逻辑在设计阶段就已确定,具有明确的先后顺序和依赖关系。例如,在一个软件开发项目中,常见的工作流可能是 “需求分析 -> 设计 -> 编码 -> 测试 -> 部署”,每个阶段都有明确的输入和输出,并且必须在前一个阶段完成后才能进入下一个阶段。
规则驱动:依赖预设的规则和条件来决定任务的执行路径。这些规则可以是简单的条件判断,如 “如果订单金额大于 1000 元,则需要经理审批”,也可以是复杂的业务逻辑。通过规则引擎来判断和执行相应的流程分支。
可预测:由于流程和规则都是预先设定好的,所以工作流的执行结果具有较高的可预测性。只要输入条件确定,输出结果就是可预期的。这使得工作流在处理一些对准确性和稳定性要求较高的任务时具有明显优势,例如企业财务报销工作流,员工提交报销申请后,系统会按预设规则自动检查报销单据,流转审批,整个流程清晰规范,大大提高了财务报销的效率和准确性。
实际运行流程对比
Workflow 示例流程:
1、用户输入触发节点
2、判断参数是否合法(条件节点)
3、调用一个 Agent 节点(负责内容生成)
4、Agent 输出结果 → 传递给 HTTP 请求节点
5、发起 API 调用(如写入 CRM)
6、返回处理状态或结果给用户
Agent 执行流程:
1、读取用户输入 + 历史上下文
2、进入推理回合(ReAct / Tool Use)
3、判断是否调用工具 → 发起请求 → 接收响应
4、再次推理 + 输出答案
在 Workflow 中调用 Agent:关键的 Agent 节点
在 Dify 的多 Agent 架构中,通过 Workflow 调用 Agent 是实现复杂任务处理的重要方式,而其中的 Agent 节点则扮演着核心角色,它是连接 Workflow 与 Agent 的关键桥梁,让工作流具备了智能决策和灵活处理任务的能力。
Agent 节点的关键作用
Agent 节点在 Dify 的 Workflow 中具有举足轻重的作用。它通过集成不同的 Agent 推理策略,赋予大语言模型在运行时智能选择并执行工具的能力,从而实现多步推理 。这意味着,当工作流运行到 Agent 节点时,它不再按照预先设定的固定步骤执行,而是根据当前的任务需求和输入信息,动态地决定调用哪些工具以及如何使用这些工具来完成任务。
以一个智能写作助手为例,当用户输入 “帮我写一篇关于人工智能发展趋势的文章大纲” 时,Agent 节点接收到这个请求后,会根据预定义的推理策略,首先判断需要调用搜索引擎工具来获取最新的人工智能发展趋势相关信息,然后调用文本分析工具对这些信息进行整理和提炼,最后调用大纲生成工具,根据分析结果生成文章大纲。在这个过程中,Agent 节点就像是一个智能的指挥官,根据实际情况灵活地调配各种工具,以完成复杂的写作任务,极大地提高了工作流的灵活性和适应性。
什么时候用 Agent,什么时候用 Workflow?
理解差异只是第一步,选型才是落地关键。以下是根据不同业务目标推荐的选型建议:
业务目标 | 推荐机制 | 理由说明 |
---|---|---|
构建 AI Copilot(例如企业内部助理) | ✅ Agent | 多轮推理 + 模型自主性强 |
接入数据/CRM/外部 API | ✅ Workflow | 节点清晰,变量流转稳定 |
智能问答 + 数据查找 + 输出格式化 | ✅ Agent + Workflow 联动 | Agent 处理内容理解,Workflow 管控流程 |
条件逻辑复杂(多个条件分支) | ✅ Workflow | 拓扑结构更清晰,调试友好 |
用户输入触发后台任务链 | ✅ Workflow(主流程)+ Agent(推理节点) | 组合最佳实践架构 |
推荐搭配方式:Agent 嵌入 Workflow(混合架构)
Agent和Wordflow,一个是大脑,一个是流程控制器。我们可以将 Dify 中的 Agent 和 Workflow 类比为:
类比角度 | Workflow | Agent |
---|---|---|
角色 | 流程控制器 | AI 决策大脑 |
能力 | 控制节点逻辑、条件流转 | 多轮语义推理、调用函数工具 |
开发者视角 | 可视化 + 明确路径 | 策略驱动,模糊但强大 |
运维难度 | 易测试、结构化 | 需追踪语义链路,依赖日志 |
推荐配合方式 | 主流程由 Workflow 驱动 | 子任务交给 Agent 智能处理 |
dify中如何在chatflow中配置agent
Dify的工作室中选择chatflow, 编排好一个对话流,然后引入agent组件。
如上图,配置了一个chatflow中调用agent的工作流,其中是通过添加agent工作节点来添加的。
添加的agent可以选择外部的工具和内部创建的工作流。
其中agent的策略可以选择官方的策略插件。
Dify Agent策略插件提供了两种推理策略Function Calling和ReAct。
下面进行简单对比:FunctionCalling将用户命令映射到特定的函数或工具。LLM 识别用户的意图,决定调用哪个函数,并提取所需的参数。这是一种直接调用外部能力的简单机制。
它的优点有:
精确:直接调用适合定义任务的正确工具,避免复杂的推理。
易于外部集成:将外部 API 和工具集成到可调用的函数中。
结构化输出:提供结构化的Function Calling信息,便于处理。
ReAct(推理 + 行动)
ReAct 在LLM推理和采取行动之间交替进行。LLM分析当前状态和目标,选择并使用一个工具,然后利用工具的输出进行下一步的思考和行动。这个循环会一直重复,直到问题得到解决,它的优点有:
利用外部信息:有效使用外部工具来收集模型单独无法处理的任务所需的信息。
可解释的推理:推理和行动步骤交织在一起,允许一定程度上跟踪Agent 的过程。
广泛适用性:适用于需要外部知识或特定行动的任务,例如问答、信息检索和任务执行。
这里其实还个缺陷就是agent组件不能调用agent,这里只能调用外部工具和内部的工作流
但是前提还是可以调用mcp服务。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~