[AI Meta Llama-3.1] 介绍

这款开源人工智能模型,你可以进行微调、蒸馏并在任何地方部署。最新的指令调优模型有8B、70B和405B版本可供选择。

模型

  • 405B 旗舰基础模型,支持最广泛的使用案例。
  • 70B 性能卓越、成本效益高的模型,支持多种使用案例。
  • 8B 轻量级、超快速的模型,可在任何地方运行。

关键能力

  • 工具使用
  • 多语言代理
  • 复杂推理
  • 编码助手

让羊驼成为你自己的

使用我们的开放生态系统,通过选择一系列差异化的产品服务来更快地构建,以支持你的使用案例。

  • 推理 选择实时推理或批量推理服务。下载模型权重以进一步优化每个代币的成本。
  • 微调、蒸馏与部署 为你的应用程序进行适应性调整,使用合成数据进行改进,并部署在本地或云端。
  • RAG与工具使用 使用羊驼系统组件,并通过零样本工具使用和RAG扩展模型,以构建具有代理行为的模型。
  • 合成数据生成 利用405B高质量数据,改进针对特定使用案例的专业模型。

快速开始与合作伙伴

模型评估

在超过150个基准数据集上进行测量,这些数据集涵盖了多种语言,并经过广泛的人类评估。

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 使用 LLaMA-Factory 对 LLaMA3.1 模型进行微调 为了使用 LLaMA-Factory 对 LLaMA3.1 进行微调,需遵循一系列配置和命令来设置环境并启动训练过程。 #### 设置 GPU 环境 确保已安装适合的 CUDA 版本以及 PyTorch 的 GPU 支持版本。这可以通过访问 PyTorch 官网获取相应指令完成安装[^3]: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` #### 验证安装 在确认所有依赖项正确无误之后,在 LLaMA-Factory 路径下调用以下命令以检验安装情况: ```bash llamafactory-cli version llamafactory-cli train -h ``` #### 准备数据集与模板文件 对于特定应用领域或任务的数据准备至关重要。假设已经准备好用于微调的数据集,并将其放置于 `data` 文件夹内。另外,还需编辑身份信息以便更好地适配自定义需求[^5]: ```python import json %cd /content/LLaMA-Factory/ NAME = "Gavin大咖打造的Llama3人工智能助手" AUTHOR = "LLaMA Factory" with open("data/identity.json", "r", encoding="utf-8") as f: dataset = json.load(f) for sample in dataset: sample["output"] = sample["output"].replace("NAME", NAME).replace("AUTHOR", AUTHOR) with open("data/identity.json", "w", encoding="utf-8") as f: json.dump(dataset, f, indent=2, ensure_ascii=False) ``` #### 启动 Web UI 或者直接运行微调脚本 有两种方式来进行实际的微调操作:通过图形界面 (WebUI) 或者命令行工具执行。这里提供两种方法的选择依据个人偏好而定。 ##### 方法一:利用 WebUI 方便调试 开启 WebUI 前先设定好使用的模型仓库为 ModelScope[^2]: ```bash export USE_MODELSCOPE_HUB=1 && llamafactory-cli webui ``` ##### 方法二:直接调用 CLI 工具快速上手 此法适用于熟悉命令行操作的用户群体,只需指定必要的参数即可开始训练进程[^1]: ```bash CUDA_VISIBLE_DEVICES=1 \ llamafactory-cli webchat \ --model_name_or_path [your path]/llm/Meta-Llama-3.1-8B-Instruct/ \ --adapter_name_or_path [your path]/llm/LLaMA-Factory/saves/Llama-3.1-8B/lora/sft-3/ \ --template llama3 \ --finetuning_type lora ``` 请注意替换 `[your path]` 为具体的本地存储位置。 #### 参数调整建议 由于不同应用场景下的最优超参可能有所差异,因此推荐根据具体情况进行适当调节。虽然不存在绝对标准的最佳实践指南,但可以根据以往经验总结出一些较为合理的区间范围作为参考起点[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值