30行代码基于通义千问LLM实现本地简单的多轮对话

Qwen是基于transformer的纯解码器语言模型的一个系列, [Qwen1.5-0.5B-Chat]是其中最小的一个型号,接下来我们将基于它在本地实现简单的多轮对话。

环境准备

  • Python版本>3.8 -> python --version
  • 安装PyTorch -> pip install torch torchvision
  • 安装transformers库 -> pip install transformers

如果下载很慢可以设置阿里镜像

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
pip config set install.trusted-host mirrors.aliyun.com

加载模型

# from transformers import AutoTokenizer, AutoModelForCausalLM
# 如果后面模型下载很慢,可以使用阿里的modelscope -> pip install modelscope
from modelscope import AutoTokenizer, AutoModelForCausalLM

# AutoModelForCausalLM 根据你提供的模型名称,自动加载用于生成任务的模型类,适用于因果语言模型(如GPT系列),可以预测序列中的下一个元素
# AutoTokenizer 自动加载与模型匹配的分词器,用于文本的预处理和后处理

# 本地模型,如果有的话,可以直接加载
# 没有的话,可以通过下面的cache_dir来设置加载的时候缓存到这个路行
local_model = "./my_local_models/Qwen1.5-0.5B-Chat"
tokenizer = AutoTokenizer.from_pretrained(
    # 如果本地有模型,可以直接使用路径加载local_model
    # 如果没有,就直接写模型的名字,可以到 https://huggingface.co/models 或者 https://modelscope.cn/models 查看模型
    "Qwen/Qwen1.5-0.5B-Chat",
    # 自动检测并使用适合模型的dtype(数据类型)
    torch_dtype="auto",
    # 自动将模型分布在可用的设备上,如果指定了GPU,会尽量将模型的不同部分分配到GPU上以适应其大小。
    device_map="auto",
    # 缓存地址
    cache_dir=local_model,
)
# 保存到本地
tokenizer.save_pretrained(local_model)
model = AutoModelForCausalLM.from_pretrained(
    "Qwen/Qwen1.5-0.5B-Chat", cache_dir=local_model
)
model.save_pretrained(local_model)

设置聊天模板

prompt = input("输入对话:")
if prompt == "q":
    break
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt},
]
# 设置聊天模板
text = tokenizer.apply_chat_template(
    messages,
    # 是否将输出标记化。如果为 False,输出将是字符串。
    tokenize=False,
    # 可以确保模型生成文本时只会给出答复,而不会做出意外的行为,比如继续用户的消息。
    add_generation_prompt=True,
)
# print(text)
# add_generation_prompt=True的情况
# 输入对话:你好
# <|im_start|>system
# You are a helpful assistant.<|im_end|>
# <|im_start|>user
# 你好<|im_end|>
# <|im_start|>assistant

# False的情况
# 输入对话:你好
# <|im_start|>system
# You are a helpful assistant.<|im_end|>
# <|im_start|>user
# 你好<|im_end|>

为模型准备输入

# 将格式化后的文本进行分词并转换成PyTorch张量
model_inputs = tokenizer([text], return_tensors="pt")
generated_ids = model.generate(
    # 对应的索引
    model_inputs.input_ids,
    # 生成的token数量
    max_new_tokens=512,
)
# print(model_inputs.input_ids)
# tensor([[151644,   8948,    198,   2610,    525,    264,  10950,  17847,     13,
#          151645,    198, 151644,    872,    198, 108386, 151645,    198, 151644,
#           77091,    198]])

# print(generated_ids)
# tensor([[151644,   8948,    198,   2610,    525,    264,  10950,  17847,     13,
#          151645,    198, 151644,    872,    198, 108386, 151645,    198, 151644,
#           77091,    198, 111308,   6313, 104139, 109944, 100364, 101214, 101037,
#           11319, 151645]])

# 去除生成序列中与输入重复的部分,仅保留新生成的部分。
generated_ids = [
    output_ids[len(input_ids) :]
    for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
# print(generated_ids)
# [tensor([111308,   6313, 104139, 109944, 100364, 101214, 101037,  11319, 151645])]

解码生成文字

# 调用解码器,将token ID 列表转换为字符串列表。
response = tokenizer.batch_decode(
    generated_ids,
    # 在解码时删除特殊字符。
    skip_special_tokens=True,
)[0]
print(f"回答:{response}")
# 回答:你好!很高兴为您服务。有什么可以帮助您的吗?

WeChatbfa451df981b9f11c98d96eabe202908.jpg

完整代码

from modelscope import AutoTokenizer, AutoModelForCausalLM

local_model = "./my_local_models/Qwen1.5-0.5B-Chat"
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat", torch_dtype="auto", device_map="auto", cache_dir=local_model)
tokenizer.save_pretrained(local_model)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-0.5B-Chat", cache_dir=local_model)
model.save_pretrained(local_model)
while True:
    prompt = input("输入对话:")
    if prompt == "q":
        break
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": prompt},
    ]
    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    model_inputs = tokenizer([text], return_tensors="pt")
    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    print(f"回答:{response}")

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 支持 Fine-Tuning 的大型语言模型列表及其特性比较 以下是支持微调(fine-tuning)的一些主要大型语言模型(LLM),以及它们的关键特性和应用场景: #### 1. **GPT 系列** - GPT 是由 OpenAI 开发的一系列 LLM,包括 GPT-3、GPT-3.5 和最新的 GPT-4。 - 特性: - 提供 API 接口用于定制化 fine-tuning[^1]。 - 使用顺序指令方法可以显著提高其适应特定任务的能力。 - 高度灵活,适用于多种下游任务,如文本生成、分类和答。 - 缺点:计算资源需求较高。 ```python import openai openai.api_key = 'your_api_key' response = openai.FineTune.create(training_file="file_id", model="gpt-3.5-turbo") print(response) ``` --- #### 2. **BLOOM** - BLOOM 是 BigScience 合作项目开发的一个开源多语言大模型。 - 特性: - 完全开源,允许用户自由下载并进本地 fine-tuning[^3]。 - 支持超过 40 种语言,适合国际化应用。 - 可通过 LoRA 技术实现高效低秩适配[^2]。 - 缺点:对于某些复杂任务可能需要额外优化。 --- #### 3. **FLAN 系列** - FLAN(Fine-tuned LANguage Model)是由 Google Research 发布的一组经过强化训练的语言模型。 - 特性: - 基于 T5 架构设计,在多个领域表现出卓越性能。 - 经过大量多样化数据集的预训练,能够更好地泛化到新场景。 - 提供不同规模版本(从小型到超大规模),便于根据硬件条件选择合适型号。 - 应用案例:对话系统构建、摘要提取等。 --- #### 4. **OPT 系列** - OPT(Open Pretrained Transformer)来自 Meta AI Lab,是一个完全开放源码的大规模 transformer 模型家族。 - 特性: - 包含多达 1750亿参数的最大变体,同时也提供较小尺寸选项以便快速实验。 - 易于集成至现有框架中完成个性化调整。 - 文档详尽,社区活跃有助于解决实施过程中的各类疑。 - 注意事项:需考虑存储空间限制因素。 --- #### 5. **Qwen 系列** - Qwen通义,阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型。 - 特性: - 不仅限于文字处理能力强大外还具备视觉理解和代码编写技能。 - 支持零样本学习与少样本学习模式切换自如。 - 对中文环境特别友好,覆盖广泛主题范围内的高质量回复表现优异。 - 实践指南链接可参阅官方文档获取更多细节说明。 --- ### 表格对比总结 | 模型名称 | 是否开源 | 主要优势 | 微调难度等级 | |----------|-----------|----------------------------------------------------------------------------------------------|--------------| | GPT | 商业闭源 | 广泛的应用生态;强大的上下文理解力 | 中 | | BLOOM | 开放 | 多语种支持;易于部署 | 低 | | FLAN | 部分公开 | 出色的任务迁移能力和鲁棒性 | 较高 | | OPT | 开放 | 资料齐全;灵活性好 | 低 | | Qwen | 条件下可用 | 强大的跨模态功能;优秀的中文处理 | 中 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值