今天聊一聊大模型,我们都知道AI的三大要素是:算法、数据、算力。
那什么是算法?什么又是模型呢?什么又是大模型呢?
(1)算法是一系列解决问题的明确指令或步骤。算法可以是通用的,也可以是针对特定问题设计的。在机器学习中,算法通常指的是学习过程中的优化方法,比如梯度下降算法、随机梯度下降算法、决策树算法等。算法是实现模型训练和预测的基础。
(2)模型是算法在特定数据上学习得到的表示。它是一个抽象的概念,可以理解为对现实世界中某个现象或过程的简化和抽象。在机器学习中,模型是通过算法从数据中学习得到的,它能够对新的数据进行预测或分类。模型通常包括参数和结构两部分,参数是模型在学习过程中调整的变量,结构则是模型的框架,定义了参数如何组合和相互作用。例如,一个线性回归模型、神经网络模型等。
总结:算法是构建和训练模型的方法,而模型是算法应用到数据上后学习到的结果。算法定义了如何从数据中学习,而模型则是学习后的具体表现形式。在实际应用中,选择不同的算法会影响最终模型的性能和特性。
(3)大模型是指较大、参数众多的机器学习模型,特别是深度学习中的大型神经网络。大模型通常需要大量的数据来训练,以避免过拟合,并能够捕捉到数据中的复杂模式和关系。它们往往需要强大的计算能力,如GPU或TPU集群,以及高效的并行计算框架来支持训练过程。大模型的例子包括大型语言模型(如GPT系列)、图像识别模型(如ResNet)和强化学习模型。
AI模型的分类该如何划分?
(1)AI模型的定义具体可以根据参数规模来分类。根据OpenAl的分类方法,可以将AI模型分为以下几类:
小型模型:≤1百万个参数
中型模型:1百万-1亿个参数
大型模型:1亿-10亿个参数
极大型模型:>10亿个参数。
(2)按照输入数据的类型不同,大模型主要可以分为三大类
A、语言大模型(NLP):是指在自然语言处理(Natural LanguageProcessing,NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。这类大模型的主要特点是它们在大规模语料库上进行了训练,以学习自然语言的各种语法、语义和语境规则。例如:GPT系列(OpenA1)Bard(Google)、文心一言(百度)。
B、视觉大模型(CV):是指在计算机视觉(Computer Vision,CV)领域中使用的大模型,通常用于图像处理和分析。这类模型通过在大规模图像数据上进行训练,可以实现各种视觉任务,如图像分类、目标检测、图像分割、姿态估计、人脸识别等。例如:VIT系列(Google)、文心UFO、华为盘古CV、INTERN(商汤)
C、多模态大模型:是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。这类模型结合了 NLP 和 CV 的能力,以实现对多模态信息的综合理解和分析,从而能够更全面地理解和处理复杂的数据。例如:DingoDB 多模向量数据库(九章云极DataCanvas)、DALL-E(OpenAl)、悟空画画(华为)、midjourney。
(3)按照应用领域的不同,大模型主要可以分为L0、L1、L2 三个层级。
A、通用大模型 L0:是指可以在多个领域和任务上通用的大模型。它们利用大算力、使用海量的开放数据与具有巨量参数的深度学习算法,在大规模无标注数据上进行训练,以寻找特征并发现规律,进而形成可“举一反三“的强大泛化能力,可在不进行微调或少量微调的情况下完成多场景任务,相当于 AI 完成了“通识教育”。
B、行业大模型 L1:是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度,相当于AI 成为“行业专家”。
C、垂直大模型 L2:是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果,
目前市面上有什么大模型,分别是哪些公司的?
大模型的评价维度:
结合IDC发布的《2023中国大模型发展白皮书》评估框架作为参考,评价维度包含一个整体评估框架、三个评估维度、六个一级指标和十一个二级指标。
从0-1模型是怎么构建的?
模型的构建一般比较复杂,但是主要步骤基本如下:
问题定义:在创建模型之前,首先需要明确要解决的问题或要实现的目标。这包括确定是进行分类、回归、聚类还是其他类型的任务。
数据收集:收集用于训练模型的数据。这些数据可以是标记好的(监督学习)或未标记的(无监督学习)。数据的质量和数量对模型的性能有直接影响。
数据预处理:清洗和准备数据,包括处理缺失值、异常值、标准化或归一化数值、特征编码等,以使数据适合模型训练。
选择模型架构:根据问题的性质选择合适的模型架构,如决策树、神经网络、支持向量机等。
特征工程:选择或构造对预测任务有帮助的特征,这可能包括特征选择、特征提取或特征构造。
模型训练:使用算法对模型进行训练。在监督学习中,这通常涉及到最小化预测误差的损失函数;在无监督学习中,则可能涉及到数据分布的学习。
模型评估:使用验证集或交叉验证等方法评估模型的性能,常用的评估指标包括准确率、召回率、F1 分数、均方误差等。
模型优化:根据评估结果对模型进行调整,这可能包括调整模型参数(超参数调优)、改变模型结构、使用正则化技术等。
模型部署:将训练好的模型部署到生产环境中,使其能够对新的数据进行预测或分类。
但目前大部分大模型应用都是采用的特定数据库 + Prompt + 通用大模型的架构,很少有公司自己从0-1的训练大模型的,耗时耗钱耗精力,也许还么有训练出来,公司就已经倒闭了。
随着大模型的持续爆火,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份网络安全从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
