Teamcenter接入本地Deepseek-R1轻松实现企业知识库

蛇年伊始,DeepSeek凭借媲美openAI o1的强大推理能力,获得国内外的广泛关注。同时,利用MoE框架和蒸馏技术,DeepSeek将大模型高效蒸馏到小型稠密模型上,实现高性能与计算效率的平衡,这就使得企业接入和使用推理模型的门槛大大降低。

今天,我将基于Teamcenter平台与DeepSeek模型,在个人工作站上部署一套完整的企业知识库,实现产品设计相关的智能问答机器人。

01

软硬件环境准备

硬件环境:

笔记本工作站 Dell Precision:``CPU:12th i9-12900H,``内存:64G``显卡:NVDIA RTX A2000(8G)

软件环境:

Teamcenter 2406(以下简称TC)``LLM:DeepSeek R1:7b(效果和速度兼备)``向量数据库:OpenSearch 1.17

02

结合 DeepSeek 的 TC AI Chat 效果

在这个视频中,工程师在设计电池尺寸时提出相关问题,通过RAG框架检索Teamcenter相关需求和文档,进而交给DeepSeek进行推理和总结。从答案中他知道了电池包尺寸需要考虑电芯数量、冷却方式以及集成到整车中的方法等等。这些内容来自于企业内部,同时可以被跟踪和追溯,再也不用担心企业数据的安全问题了。

03

部署和推理架构

这里我们先简单看看部署架构,在虚拟机中部署了完整的TC服务,同时也包括两个与智能问答机器人相关的微服务:知识向量化微服务和大语言模型集成微服务,这两个微服务在TC的微服务框架中,将支持企业知识的问答,同时也能够根据压力进行负载均衡。再一个就是大语言模型,我们使用DeepSeek-R1:7b模型,这也是这台工作站能够支撑的模型大小的上限,既满足性能要求也可以保证回答的效果。

从推理过程来看,首先,通过嵌入服务将文档、图像以及视频等高维数据进行切片,捕获其语义并存储到向量数据库中,从而支撑未来多模态数据的高效检索和相似查询。

接下来,通过推理服务来规划编排一系列任务,将用户的问题借助嵌入模型向量化,而后查询向量数据库,得到相似性最高的TopN条记录,将这些记录以及问题本身交给DeepSeek进行总结和归纳,最终输出给用户。

04

详细部署和配置步骤

  1. DeepSeek-R1:7b模型安装

    可以在各大开源社区下载到,选择合适的模型大小即可,这里我们采用7b模型。

  2. 安装和配置向量数据库(OpenSearch为开源数据库,可参考手册)

  3. 在LLM微服务中,配置DeepSeek AI服务的API

    其他参数可在TC首选项中进行配置(根据具体软硬配置和使用压力等):

  4. 启动TC索引服务,利用Solr索引与向量化服务配置,完成企业知识的向量化并存储到向量数据库,之后更新并发布的数据将自动进行向量化,从而更新企业知识库。

  5. 测试并完成TC AI Chat部署及配置

    DeepSeek 连接测试

    TC AI Chat 测试

    05

    总结

    通过以上过程,成功在个人工作站上完成了Teamcenter+DeepSeek的完全本地化部署。借助完善的Teamcenter配置框架,仅半天时间,就搭建起一个完整的企业知识库,以问答形式即可高效解答复杂问题,大幅提升个人效率和企业生产力。随着技术的不断迭代,像DeepSeek这样的AI创新企业将使得个人和企业更容易接触和使用AI。同时,西门子也将结合多年的工业领域AI实践,打造更加贴合企业设计和制造等应用场景的AI服务,为企业带来新质生产力。

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值