开源!基于DeepSeek的本地化企业内部知识库和工作流平台, 允许商业化

基于DeepSeek的本地化企业内部知识库和工作流平台,大型国企央企都需要

源代码

http://www.gitpp.com/sciences/deepseek-localweb-rag

基本功能:

1、文档智能

2、RAG

3、符合信创要求的llm本地部署和加速方案

本项目遵循Apache 2.0协议,基于本项目的二次开发可以商用

基本判断,国内toB市场基本是DeepSeek的了,符合信创要求的llm本地部署和加速方案 —— 有外网隔离要求的业务场景大部分可能都是国企、央企、政务还有范体制内。

DeepSeek 领导肯定,国产、完全自主、开源、免费、成本低、性能优于openAI,无论从哪个角度看,软件商都要拥抱DeepSeek,后期也没有乱七八糟的费用。

基于DeepSeek的本地化企业内部知识库和工作流平台是一个专为满足大型企业,尤其是国企、央企等对于信息安全和本地化部署需求而设计的开源项目。以下是对该项目的详细介绍:

项目概述

  • 项目名称:基于DeepSeek的本地化企业内部知识库和工作流平台

  • 源代码地址:http://www.gitpp.com/sciences/deepseek-localweb-rag

  • 协议:Apache 2.0,允许基于本项目的二次开发并商用

基本功能

  1. 文档智能:
  • 提供强大的文档管理和搜索功能,帮助企业快速定位和利用内部知识资源。

  • 支持多种文档格式,如PDF、Word、Excel等,方便企业整合现有知识库。

  1. RAG(Retrieval Augmented Generation):
  • 结合检索和生成技术,提供更为智能和准确的信息检索体验。

  • 通过RAG技术,系统能够根据用户查询自动从知识库中提取相关信息,并生成简洁明了的回答。

  1. 符合信创要求的LLM本地部署和加速方案:
  • 满足国家信息安全和信创(信息技术应用创新)要求,确保数据在本地安全存储和处理。

  • 提供本地化的LLM(Large Language Model)部署方案,以及针对特定业务场景的加速优化,提高系统响应速度和性能。

目标用户

  • 国企、央企:这些企业通常对信息安全有严格要求,需要本地化部署的解决方案来确保数据的安全性和可控性。

  • 政务机构:政务机构同样需要遵守国家信息安全规定,本地化部署的LLM平台能够满足其信息处理和决策支持的需求。

  • 范体制内企业:包括其他需要遵守特定信息安全标准或法规的企业或组织。

市场前景

随着国内企业对信息安全和本地化部署需求的日益增加,基于DeepSeek的本地化企业内部知识库和工作流平台具有广阔的市场前景。特别是在国企、央企和政务领域,该项目有望成为这些企业信息化建设的重要组成部分。

二次开发与应用

由于项目遵循Apache 2.0协议,开发者可以自由地进行二次开发,并将其应用于商业场景。这为企业提供了极大的灵活性和定制空间,可以根据自身需求对平台进行定制和优化。

综上所述,基于DeepSeek的本地化企业内部知识库和工作流平台是一个具有广泛应用前景和强大功能的开源项目。它不仅能够满足国企、央企和政务机构对信息安全和本地化部署的需求,还为企业提供了强大的知识管理和工作流支持。

基于DeepSeek的本地化企业内部知识库和工作流平台,大型国企央企都需要

源代码

http://www.gitpp.com/sciences/deepseek-localweb-rag

基本功能:

1、文档智能

2、RAG

3、符合信创要求的llm本地部署和加速方案

本项目遵循Apache 2.0协议,基于本项目的二次开发可以商用

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户想了解有哪些好用的AI知识库管理工具,特别是用来管理本地Ollama的DeepSeek。首先,我需要确认用户的具体需求。Ollama是一个在本地运行大型语言模型的工具,而DeepSeek可能是指深度求索公司的模型,比如深度搜索或他们开发的特定模型。用户需要的是能够有效管理这些本地模型的知识库工具。 首先,我应该回顾一下常见的AI知识库管理工具,尤其是支持本地部署与Ollama集成的。可能涉及到的工具包括PrivateGPT、LangChain、LlamaIndex、Ollama本身的功能,还有可能其他开源项目如AnythingLLM、LocalAI、Chroma DB等。 接下来,我需要考虑这些工具是否支持本地管理,能否与Ollama的API对接,是否有文档管理、检索增强生成(RAG)功能,用户界面是否友好,是否开源或免费等等。例如,PrivateGPT专注于本地文档的隐私保护,适合处理敏感数据;LangChainLlamaIndex则更侧重于构建编排AI应用,适合开发者;AnythingLLM提供图形界面,可能对非技术用户更友好。 另外,用户提到的是管理DeepSeek模型,可能需要确认这些工具是否支持自定义模型或特定格式的模型文件。Ollama本身支持导入自定义模型,所以这些工具是否能通过Ollama的API进行交互也很重要。例如,使用Ollama作为后端,通过其提供的API,前端工具如AnythingLLM或PrivateGPT可以调用本地模型进行处理。 可能还需要考虑工具的数据处理能力,比如是否支持多种格式的文档导入,是否有自动化处理流程,如文本分块、向量化存储、语义搜索等。例如,Chroma作为向量数据库,常与LangChain结合使用,而LlamaIndex专门优化了检索功能。 另外,用户可能希望有一个集成的解决方案,能够方便地管理知识库调用模型,所以需要评估各个工具在这方面的整合能力。例如,LocalAI可以替代OpenAI的API,可能方便与现有工具集成,但如果用户已经使用Ollama,可能需要不同的适配方式。 还需要考虑社区支持更新频率,比如AnythingLLM是否持续更新,是否有活跃的社区解决问题。PrivateGPT虽然功能强大,但可能需要较多的配置,对于非技术用户可能不太友好。 总结下来,可能的推荐包括:1. Ollama自带的功能,结合脚本或简单前端;2. AnythingLLM作为图形界面;3. LangChain + LlamaIndex + Chroma的组合,适合开发者;4. PrivateGPT适合注重隐私的文档处理;5. LocalAI作为替代API方案。需要分别介绍每个工具的特点、如何与Ollama集成、优缺点,以及适用场景。 同时,用户可能希望步骤清晰,如何安装配置这些工具,是否需要额外依赖,比如Docker或者Python环境。例如,AnythingLLM提供Docker镜像,可能更易于部署;而LangChain需要Python编程,适合有一定技术背景的用户。 最后,需要确保推荐的工具确实支持本地部署,并且与Ollama兼容,可能通过REST API调用本地模型。例如,AnythingLLM允许设置本地Ollama的API端点,从而使用其管理的模型进行问答知识库管理。</think>以下是几款适合管理本地Ollama模型(如DeepSeek)的AI知识库工具,它们支持文档管理、本地化部署及高效检索: --- ### **1. AnythingLLM** - **特点** - 开源且提供商业版,支持本地部署,集成多种AI模型(包括Ollama)。 - 直观的图形界面,支持上传PDF、TXT、Word等文档,自动分块、向量化存储。 - 直接对接Ollama API,可调用本地运行的DeepSeek模型进行问答。 - **集成Ollama** 在设置中填入Ollama的本地API地址(如`http://localhost:11434`),选择模型即可。 - **优势** 无需编程,适合非技术用户,支持多用户协作权限管理。 - **项目地址** [AnythingLLM GitHub](https://github.com/Mintplex-Labs/anything-llm) --- ### **2. PrivateGPT** - **特点** - 完全本地运行的隐私优先工具,适合处理敏感数据。 - 支持文档问答,自动生成向量数据库(使用Hugging Face嵌入模型)。 - 可通过修改配置调用Ollama的API替代默认模型。 - **集成Ollama** 修改配置文件中的模型API端点,指向本地Ollama服务。 - **优势** 数据永不离开本地,支持GPU加速,适合安全需求高的场景。 - **项目地址** [PrivateGPT GitHub](https://github.com/imartinez/privateGPT) --- ### **3. LangChain + LlamaIndex + Chroma** - **特点** - 开发者友好组合:LangChain(应用编排)、LlamaIndex(文档检索优化)、Chroma(向量数据库)。 - 灵活定制工作流,支持复杂查询RAG(检索增强生成)。 - 通过代码调用Ollama API,无缝集成DeepSeek模型。 - **集成Ollama** ```python from langchain_community.llms import Ollama llm = Ollama(base_url="http://localhost:11434", model="deepseek-llm") ``` - **优势** 高度自定义,适合需要复杂逻辑扩展性的项目。 - **教程参考** [LangChain Ollama集成文档](https://python.langchain.com/docs/integrations/llms/ollama) --- ### **4. LocalAI** - **特点** - 本地替代OpenAI API的开源工具,兼容Ollama模型格式。 - 支持加载GGUF等格式模型文件,提供类OpenAI的API接口。 - 可与其他工具(如AnythingLLM)结合,简化集成。 - **集成Ollama** 将DeepSeek模型转换为兼容格式(如GGUF),通过LocalAI加载并提供API。 - **优势** 兼容生态广泛,适合已有基于OpenAI API的应用迁移到本地。 - **项目地址** [LocalAI GitHub](https://github.com/mudler/LocalAI) --- ### **5. Ollama-WebUI** - **特点** - 专为Ollama设计的轻量级Web界面,支持基础文档交互。 - 可扩展插件实现文档上传检索功能。 - **集成Ollama** 直接与本地Ollama服务通信,无需额外配置。 - **优势** 部署简单,适合快速测试模型基础能力。 - **项目地址** [Ollama-WebUI GitHub](https://github.com/ollama-webui/ollama-webui) --- ### **选择建议** - **非技术用户**:优先选AnythingLLM或Ollama-WebUI,图形化操作省心。 - **开发者/定制需求**:用LangChain+LlamaIndex组合,灵活构建工作流- **隐私敏感场景**:PrivateGPT确保数据完全本地处理。 - **兼容性需求**:LocalAI适配现有OpenAI生态工具。 部署时需确保环境依赖(如Docker/Python)正确安装,具体步骤参考各项目文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值