OpenManus、OWL真实测评,Manus的Agent护城河一碰就碎?

AI 时代项目复刻的速度有多快?

周四0:00出的 Manus,

周五晚上10:57 MetaGPT 开始 OpenManus 的第一次提交,

OWL 更夸张,CAMEL AI 在周四凌晨5:37从 Deep Swarm 改名为 OWL 后,开始提交更新。在 GAIA 基准测试,也就是 Manus 超过 OpenAI o1 Deep Research 的同款测试里,其 Level 1 分数达到 81.13,也超过了Deep Research,接近 Manus 的 86.5。

因为现在验证码还是一码难求,很多人还对这两个项目实际效果很感兴趣的,但是项目安装有门槛,尤其是 OWL,光是配 Key 就需要 OPENAI_API_KEY、GOOG_API_KEY、SEARCH_ENGINE_ID、HF_TOKEN、CHUNKR_API_KEY、FIRECRAWL_API_KEY,还需要基础的 python 环境和代码运行知识。

刚好上次我做了 Manus VS OpenAI o1 Deep Research & Claude3.7 Extended thinking,

这次就算是硬刚 Manus 的第二篇,开源篇。

Here we go!

问题一、帮我写一个两个人机对战的贪吃蛇 HTML 游戏?

上来我们先来个难的,

之前测试 o1 Deep Research 的时候,这类游戏类就基本是它的死对头,就算人工将生成好的代码放到本地运行出错率也很高

再次赞一下 Manus 的完成率是真的很高,之前 Grok3 画的 ai game 的饼都快要实现了。

目前 OpenManus 和 QWL 都没有可视化界面,OpenManus主要是通过命令行输入提示语交互,而 QWL 是通过在代码文件里面修改问题文本完成交互,所以我会用 Trae 分别打开两个项目,尽可能把运行过程完整保留下来。

再再再严谨一点,这次的测试时间是03/10/12:00更新到两个项目的最新版本。

蓝色就是我控制的小蛇,OWL 的输出是分回合的 Round,但因为是命令行,一点点观看体验都没有,我用 Claude 总结出了 OWL 的思考步骤:

1. 基础搭建   - 创建 HTML 结构(canvas 元素)   - 设置 CSS 样式(居中显示)   - 初始化 JavaScript 变量和函数   2. 核心功能实现   - 蛇的移动控制(方向键和 WASD)   - 碰撞检测(边界、自身、对手)   - 食物系统(随机生成、得分)   3. 完善与测试   - 添加计分系统   - 实现游戏结束逻辑   - 进行功能测试和验证   

为了保证输出的完整过程,运行的时候可以试试看python owl/run.py > q1.log 2>&1

OpenManus 是会自动写入同目录的logs的,虽然命令行输出还是比较难读,但是好处是给出了执行步骤、当前轮次使用的工具以及思考过程,并且还支持多轮对话。

2025-03-10 00:46:15.765 | INFO     | app.agent.toolcall:think:54 - 🛠️ Manus selected 0 tools to use   2025-03-10 00:46:15.765 | INFO     | app.agent.base:run:137 - Executing step 2/30   2025-03-10 00:46:26.661 | INFO     | app.agent.toolcall:think:53 - ✨ Manus's thoughts:  It looks like you've shared a conversation with an AI assistant called "OpenManus" that involved creating a two-player snake game in HTML. The conversation shows:   

可惜前后2次都生成失败了。我同样让 Claude3.7 总结 OpenManus的思考和执行过程:

一、需求处理      1. 接收中文请求 → 解析双人控制/实时对战需求   2. 识别技术栈 → 选定HTML+CSS+JS组合   二、开发实施      - 对象建模:双蛇独立对象(坐标/颜色/控制)   - 核心逻辑:碰撞检测算法 + 游戏循环控制   - 界面构建:中文面板 + 状态按钮      三、输出响应   1. 生成完整可执行文件: /Users/lhj/AI/OpenManus/games/snake.html   2. 持续验证:30步循环校验控制逻辑与状态同步   3. 明确工具边界:声明专属工具集(PythonExecute/FileSaver)与通用编码能力   核心机制      - 稳定响应:相同请求始终保持代码一致性   - 语义理解:自动关联日志位置(如768行特征声明)   - 路径控制:严格限定输出路径为绝对路径   

问题二、人物心理侧写

收集小米创始人 雷军 的公开发言信息以及互联网上对他的深入分析文章,分析他的世界观,人生观和价值观,穿透决策结果,找到他的决策第一模式。

输出一份关于他内心深处的心理侧写 PDF 报告。

Manus 总结出雷总的决策第一模式是"价值驱动型决策",这种决策模式以价值观先行、长期主义思维和用户视角优先为核心特征。虽然Manus没有直接输出PDF,但是系统本身支持将txt导出成PDF。

这个问题就是绝对的烧 Token 大头,跑半回我的 API 额度就花完了,伤不起啊,半个回合就花了2.97刀,按照这样计算的话,Manus一个月$200的话都不能算贵。。。

我们看看OWL表现如何,还是通过 Claude3.7 总结:

从日志分析,owl完成任务的过程如下:      1. 信息收集阶段 :      - 使用搜索工具搜索了"Lei Jun public speeches"      - 获取到三个主要文章来源:        - Lei Jun在印度的英语演讲        - Lei Jun的年度演讲        - 小米造车进展的相关报道           2. 内容分析阶段 :      - 使用document_processing_toolkit提取并分析了这些文章的内容      - 整理了Lei Jun的世界观、人生观和价值观      - 总结了他的决策风格和领导方式         3. PDF生成尝试 :      - 尝试使用两个不同的Python库生成PDF:        - 首先尝试使用 fpdf 库        - 然后尝试使用 reportlab 库      - 但两次尝试都失败了,原因是环境中缺少这些库(ModuleNotFoundError)   

只筛选出了3篇文章来源,这个应该是比目前的 Deep Research和 Deep Search系统们的参考网页数要少。优点是并没有产生幻觉,还是得到了雷总的侧写报告。

雷军心理侧写报告      一、世界观   1. 创新与技术作为变革催化剂      - 坚信技术能够改善生活      - 通过小米在智能手机、智能家居和物联网等领域的扩张体现创新承诺         2. 全球视野      - 致力于扩大小米的全球影响力      - 拥抱国际市场和多元化的消费者需求      二、人生哲学   1. 勇气与韧性      - 在面对美国制裁等挑战时展现出坚韧      - 自筹资金投资造车项目,展现冒险精神和长期目标追求   2. 以用户为中心      - 重视用户反馈和互动      - 通过小米社区建立强大的用户基础      三、价值观   1. 专注与卓越      - 鼓励团队在特定领域追求卓越      - 注重产品质量而非数量   2. 社会责任      - 积极支持公益事业      - 强调技术创新与社会发展的结合      四、决策风格与领导力   1. 决策特点      - 战略性和长期导向      - 基于用户反馈做出决策      - 注重可持续发展和创新   2. 领导方式      - 以人为本的管理风格      - 注重团队建设和人才发展      - 营造开放的企业文化      - 具有远见和感召力      五、核心特征   1. 务实真诚的个人风格   2. 强调勇气和突破   3. 重视长期战略目标   4. 亲力亲为的工作态度   5. 注重用户价值和社会影响      结论:   雷军展现出一个既有远见又脚踏实地的科技企业家形象。他的决策模式融合了战略思维、用户导向和社会责任感,形成了独特的领导风格。他的成功源于对技术创新的坚持、对用户需求的关注以及在面对挑战时展现出的勇气与决心。   

我个人是更喜欢 OWL 的总结风格。接下来看看 OpenManus

这次没有输出。。。

这个真不是我刻意黑 OpenManus,运行了两次,它从一开始就卡在了工具调用。因为我还没有把源代码会过一遍(太肝了),但目前OpenManus除了配置 Claude API 就没有其他三方 API 工具(如联网等)的配置了,会不会后续把支持的工具列表放出来。

从日志分析来看,虽然最初的请求是要生成一个关于雷军的心理分析报告,但是由于系统存在以下问题,实际并没有生成内容:      1. 系统行为分析:   - 系统计划执行30个步骤   - 每个步骤中,AI助手都在重复声明它无法使用所需工具   - 没有实际执行内容生成的任务   - 所有步骤都显示"Manus selected 0 tools to use"      2. 主要问题:   - AI助手一直在强调它不能执行Python代码   - 不能保存文件   - 不能访问互联网搜索   - 不能生成PDF   - 但最关键的是它没有转向使用已有知识来完成内容生成的任务   

在这里插入图片描述

问题三、小球跳动

Manus能做出这样丝滑的短视频还是很有意思的,从执行过程,它还去看视频学习如何用Python做一个小球游戏,通过游戏画面来合成视频,还是AI这个新脑子好用。关键是还自动加上了背景音乐。强烈推荐一波完整的运行视频。

# 跳动彩球文生视频制作指令      ## 任务描述   请创建一个简短视频,由三个连续场景组成,每个场景展示不同颜色的背景和跳动的球。总时长不超过10秒,每个片段控制在3秒以内。      ## 视频内容详细说明      ### 镜头1   \```生成一段不超过3秒的视频:纯红色背景上有一个蓝色球从画面底部向上弹跳两次。球体应有轻微的弹性变形和自然的物理运动。画面简洁干净,只有背景和球体。   \```### 镜头2   \```生成一段不超过3秒的视频:纯黄色背景上有一个红色球从画面底部向上弹跳两次。球体运动方式、弹性和物理特性与第一个镜头保持一致。画面同样简洁,只有背景和球体。   \```### 镜头3   \```生成一段不超过3秒的视频:纯蓝色背景上有一个黄色球从画面底部向上弹跳两次。球体运动方式、弹性和物理特性与前两个镜头保持一致。画面同样简洁,只有背景和球体。   \```## 视频制作步骤      1. **生成各场景**      - 按照上述描述分别生成三个短视频片段      - 确保每个片段不超过3秒      - 保持所有场景的分辨率一致(建议1080p)      - 确保球体大小在三个场景中保持一致      2. **视频合成**      - 按顺序直接连接三个视频片段(红背景→黄背景→蓝背景)      - 不需要添加过渡效果,直接切换      - 确保衔接处无明显中断      3. **音频添加**      - 搜索并选择一段简短、活泼的背景音乐      - 音乐长度应与视频总长度匹配(约9秒)      - 建议使用无版权音乐库中的轻快节奏曲目      4. **最终输出**      - 视频格式:MP4      - 总时长:约9秒      请按照以上指令生成视频并提供最终成品。   

OWL 同样是生成了对应代码没有写入文件,也没有下载或者生成对应长度的MP3音频,下面是我用Claude3.7修复后的结果,小球颜色有切换但是背景颜色没有,完成了一半。

到了 OpenManus 这里,又来了三次来回说自己是 Claude 而不是 OpenManus,且否认自己有工具调用能力,我盲猜了一把应该是 logs 日志的问题,OpenManus应该会读取之前的日志,所以当我把之前的日志清理之后会恢复生成运行了。

变聪明了之后,OpenManus采用曲线救国,用SVG和HTML完成了视频效果的展示,小球和背景颜色都有变化,也是没有音乐和没有视频文件,完整度也是一半一半。

问题四、请分析AR眼镜技术和市场的历年变化情况,分析2025年AR眼镜市场的详细走向,并且预测它的未来如何?需要参考对比一些等效的技术方案。

刚刚问了一个主体的专题搜索,现在再来一个宽泛的、有时间跨度的深度搜索问题。之前测评的时候,Manus 的信息搜索和汇总能力是差 OpenAI o1 deep research 一点的,这次发挥超水准了,没有再被网页卡住。

OWL这次一开始使用了视频下载和分析工具,但是没有成功,后续进行了两次搜索AR眼镜的历史发展AR眼镜的技术进步,有意思的是还可以通过这两次搜索去对应的网页搜索历史版本。

这次 OpenManus 没有拉垮,第一轮就用模型生成了AR眼镜技术和市场分析报告,输出直接给了中文,并给出了明确的结论。估计30步的执行是固定的,所以接下来2-29步就陷入死循环了,持续说明无法使用 PythonExecute、FileSaver、BrowserUseTool 和 Search等工具,并且不断重申自己是 Claude 而不是 OpenManus。这一点估计跟每一轮没有动态更新执行进度有关。

烧不动了,加上前期测试,快烧了我$100了。而且都要用Claude3.7辅助阅读和运行,有点心累。

这次测试我收集了大概二十多个 Manus 运行例子,目前可以粗略分为3类,代码类、信息搜索整理类、外部软件调用类。理论上说,通过调用 API,Manus 还可以完成图片生成和视频合并的操作,也就是我们这一瞬间想到的一句话生成完整AI视频的离谱操作。

不过能完全依靠 API 的软件不多,普通软件调用因为需要登陆,OpenManus 和 OWL 都很容易被卡住。

期待后面能追加上合适的 GUI 界面吧。

在这篇文章收尾的时候,有人破解出了 Manus 虚拟机的代码,直接来说说结论:

  • Manus使用的是 Claude Sonnet 模型

  • 配备了29个工具

  • 使用多代理框架

  • 使用了"browser_use"这个开源项目

写在最后

上面的结果输出的 log,

项目对应的版本,以及Manus具体的运行过程,

我也同样放在了之前的Manus链接里面,公众号后台发我Manus就行了。

这时候我应该可以回答标题的疑问了,

OpenManus、OWL更多像是复刻了 Manus 思路的开源项目,它们都存在着一些不完美的地方。

并没有如同我测评前接受的信息一样,

Manus这套工作流没有护城河,都已经被复刻出来了的感觉。

虽然不足,但我还是很兴奋有更多的 Agent 项目出现,

这越来越证明,AI正在开启下一阶段,

而更棒的,即便是全新的阶段,依旧给更多普通人开放了使用空间。

还是那句话,

AI从不是精英适配,

而是人人可用。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

<think>嗯,用户问的是OWL在多Agent系统中的实现和应用,还提到了语义技术。首先得确认OWL在这里指的是Web Ontology Language,而不是其他缩写。OWL是用于构建本体的,所以应该和知识表示、语义互操作性有关。 用户可能是在研究多Agent系统,想知道如何利用OWL来增强Agent之间的交互或协作。多Agent系统的核心问题之一是不同Agent之间的通信和理解,如果每个Agent都有自己的术语和结构,沟通起来会有障碍。OWL能提供统一的本体,帮助标准化知识表示,这样Agent们可以基于共同的理解交换信息。 接下来要考虑OWL的具体应用点。比如在通信中的语义描述,使用OWL-S来定义服务,这样Agent能自动发现和调用服务。或者在协作中使用本体来明确任务分解和角色分配,引用里的多Agent系统概念部分可能相关,需要结合引用[1]里的内容,比如角色分配与任务协调部分。 实现方面,可能需要用OWL构建本体库,然后每个Agent都能访问这个本体,确保语义一致性。另外,推理能力也很重要,OWL支持逻辑推理,Agent可以利用推理机进行逻辑推断,处理复杂任务。比如引用[3]提到AI Agent的决策功能,可能结合OWL的推理能力来优化决策过程。 应用场景方面,用户可能想知道实际案例,比如智能交通中的路径规划,或者供应链中的协调。引用[3]里提到企业中的应用场景,可能可以举例说明。同时,用户提到语义技术,所以需要强调OWL如何提升语义层面的互操作性和自动化水平。 还要注意用户之前的问题,可能之前讨论过多Agent系统的基本概念,所以现在深入技术细节。需要确保回答结构清晰,分点说明实现和应用,每个部分结合引用中的相关内容,比如引用[1]的基本概念和协作机制,引用[3]的决策和应用场景。 最后,生成的相关问题要引导用户进一步探索,比如性能优化、具体实现工具、与其他技术的结合等。这些问题可以帮助用户深入理解OWL在多Agent系统中的实际应用和挑战。</think>### OWL在多Agent系统中的实现与应用 #### 一、OWL与多Agent系统的技术关联 OWL(Web Ontology Language)作为语义网的核心技术,通过形式化本体(Ontology)为多Agent系统提供**语义互操作性**支持[^1]。其核心作用包括: 1. **知识标准化**:定义共享的领域概念层次与关系,例如在供应链系统中统一「订单」「库存」的语义边界 2. **逻辑推理能力**:支持基于描述逻辑(Description Logic)的自动化推理,例如通过$(\exists \text{hasPart}. \text{Battery} \sqcap \forall \text{hasStatus}. \text{LowPower}) \sqsubseteq \text{AlertCondition}$ 这类公理推导设备状态 3. **服务语义标注**:使用OWL-S描述Agent服务能力,实现服务自动发现与组合 #### 二、关键实现技术 1. **本体建模** ```turtle :Agent rdf:type owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty :hasCapability ; owl:someValuesFrom :Service ]. ``` 通过OWL属性限制定义Agent必须具备的服务能力特征 2. **通信协议增强** - FIPA ACL与OWL本体集成 - 消息内容字段采用OWL个体描述 $$ \text{Inform}(sender, receiver, :TemperatureSensor \sqcap (\exists \text{hasValue}.\geq30)) $$ 3. **动态推理引擎** - 使用Pellet、HermiT等OWL推理机 - 实现上下文感知的决策支持,如基于SWRL规则: $$ \text{hasLocation}(?x, ?loc) \land \text{isEmergency}(?loc) \rightarrow \text{activateEmergencyProtocol}(?x) $$ #### 三、典型应用场景(引用[3]扩展) 1. **智能交通协调** - 车辆Agent通过OWL本体共享路况语义 - 动态路径规划中的本体推理优化 2. **供应链协同** - 统一物料、订单、物流的本体定义 - 异常事件自动推导与处理 3. **医疗应急响应** - 多机构Agent共享患者本体数据 - 基于症状本体的资源调度优化 #### 四、挑战与解决方案 | 挑战 | 技术对策 | |------|----------| | 本体演化同步 | 版本控制本体+增量推理 | | 推理效率 | 模块化本体+并行推理 | | 语义歧义 | 上下文感知的语义消解 | [^1]: 多Agent系统通过本体技术实现知识共享与协作 [^3]: AI Agent的决策功能依赖结构化知识表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值