用 Agent + MCP 打造属于你的 AI 开发团队!

在刚刚落幕的小红书独立开发大赛上,我们听到了许多依靠 AI 开发独立产品的故事,其中最具代表性的,莫过于“小猫补光灯”这款 App。据开发者花生所述,这款 App 上线仅一周便斩获超 3.5 万次下载,并在今年 3 月登顶了 Apple Store 付费榜榜首。

而这款 APP 最初仅花了 1 小时便开发而出,背后借助的便是 Claude 3.5 + Cursor,其取得的成就具象地诠释了人与 AI 协作创造的无限可能。

确实,‘口喷’需求式开发带来了极大爽感,但即便是拥有一定编程基础的我们也同时感受到了 ‘Vibe Coding’ 的不少痛点。其中路卡感受最深的是,大多数 AI 编程产品无法直接读取设计源文件,而只能基于截图还原前端界面,导致组件缺失、样式偏差明显,无法实现理想中的设计。

值得兴奋的是,随着 Anthropic MCP 的提出与普及,最近特工们也终于找到了这个痛点的解法——通过 Figma MCP Server 让 AI 直接读取 Figma 中的设计文件,实现设计到代码的无缝衔接。

不会部署 MCP 怎么办?

还有一个好消息~首个支持 MCP 的国产 AI IDE 来了!

是的,字节推出的 Trae 近期有了一次重磅更新,而且全部功能依然免费畅用。特工们也是第一时间进行了内测,结果可以说是惊喜满满了。

本次 Trae 最主要的更新便是支持了 MCP 智能工具调用。

相比其他 AI 编程产品,我们能看到 Trae 将 MCP 的调用做得更加易用,将热门实用的 MCP Servers 以内置市场的方式直接提供给了用户,甚至部分 MCP Servers 还支持了轻松配置,比如我们上文提到的 Figma MCP Server 仅需要提供自己的 API Key 即可一键配置完成,省去了很多繁琐的配置操作。

在配置完 MCP 后,用户便能通过 Trae 内置的智能体 @Builder with MCP 来对 MCP 工具随时进行调用。

最近路卡正在开发一款 APP,刚好可以实测一下 Trae + Figma MCP Server 的效果如何,顺带来一波使用 Figma MCP Server 让 AI 还原设计稿的教程:

首先,在 Figma 中复制对应 UI 设计稿的的链接:选中顶节点 Frame - 右键 Copy/Paste as - Copy link to selection。

接着在 Trae 中 @Builder with MCP,粘贴设计稿链接,并输入 Prompt,等待 Trae 根据我们的设计稿对前端界面进行开发还原:

最终我们来看看通过 Trae + Figma MCP Server 的设计稿还原效果,同时对比一下直接用上传截图还原的效果:

可以明显看到,Trae 通过 Figma MCP Server 获取到 Figma 中的设计文件后,还原的效果虽然有些许瑕疵,但是还是要比直接上传截图还原的效果要好了不少,该有的组件都有,布局也差不多一致。

而对于未能 1:1 还原样式的部分只需要继续复制到对应的组件链接同样再让 Trae 修复或者自己再稍微调整即可。

Trae 对 MCP 工具调用的支持,很好地解决了原先无法直接喂设计文件进行开发的痛点。综合来看,使 AI 编程在设计还原效率上至少提升了 50%。

当然,不止局限于对设计稿的还原,当有了各种各样的 MCP Servers 之后,AI 编程还有更多的想象空间待开发者们挖掘。比如能用 AI 写代码了,但是不会部署怎么办?这时候还可以利用 MCP 将 WebSearch、DocReader、终端命令结合,自动完成多步部署脚本等。

那么,有没有发现 AI + MCP Servers + Prompt 就很像我们以往创建的智能体?

是的,我们觉得 Trae 团队也明显感受到了这一点,而为了不让用户在处理不同任务时去不断重新配置 MCP 工具与Prompt,Trae 本次更新还支持用户通过自行设定 MCP Servers + Prompt 来自定义你的专家智能体,打造独属于你的 AI 开发团队。

特工们觉得这是本次更新比支持 MCP 还要惊喜的点,是在其他 AI 编程产品从未见过的功能创新。

比如,我们可以用上面配置好的 Figma MCP Server 来创建一个前端工程师智能体,写入 Prompt 并为其配置好所需的其他 MCP 工具:

创建好后的智能体便会出现在用户的自定义智能体列表中。后续,我们再遇到同样的任务场景时,便可在对话框直接通过‘@’来进行调用,无需再重新配置:

同样,我们还可以设计好诸如项目经理、产品经理、后端工程师甚至是交互设计师等智能体角色,灵活构建独属于我们的 AI 智能团,实现更加个性化的 AI 开发体验。

而本次除了以上 2 点较为亮眼的更新外,Trae 还对原先的对话上下文能力做了跟进完善:

  • 新增了 WebSearch(联网搜索) 和 DocReader(文档阅读)能力,让 AI 更懂你的需求;

  • 支持设定用户级 Rules 与项目级 Rules,灵活设定代码风格与团队规范。

距离上个月特工们对 Trae 上线时的报导,Trae 本次的更新体验下来可谓是诚意满满,甚至有所超出预期。

最重要的是,Trae 在内置了各家旗舰模型的同时还依然保持着全功能免费,这还要啥自行车~

当前 Trae 模型能力:

  • 国内版:内置 DeepSeek R1、V3、V3-0324 和 Doubao 1.5 Pro,同时支持自定义模型。

  • 海外版:内置 Claude 3.5、3.7,Gemini 2.5 Pro,GPT-4o、GPT-4.1,同时支持自定义模型。

其实,我们一直以来有个疑问:都是 AI 编程助手,字节为什么要做两款,MarsCode 和 Trae 的定位到底有啥不同?

而从这次的更新中,特工们发现了答案。从 Trae 的官网上能看到原 MarsCode 编程助手已经合并进了 Trae,升级更名为了 Trae 插件。

合并后两者有了更清晰的定位,满足了现阶段不同类型用户的不同需求:

  • Trae 插件,无缝集成至主流 IDE(VSCode、JetBrains 等),开发者无需改变原有工作流,即可轻松享受 AI 赋能带来的开发效率飞跃。现同样支持 Builder 模式。

  • Trae IDE,面向对开发体验要求更高的用户,将 AI 深度融合于 IDE 之中,从代码编写到项目执行,AI 全面地理解和调用 IDE 内信息,功能更全面,智能化程度更高。

于此,开发者可根据自身需求自由选择,或结合使用,让 Trae 真正融入自己的开发工作流中。

以上,从率先在国产 AI IDE 中引入 MCP 智能工具调用能力,再到自定义构建 AI 智能体团队的创新设计,以及 MarsCode 的并入,Trae 的每一步都在坚定朝着 The Real AI Engineer 的愿景迈进,也让我们看见了 Trae 后来者居上的野心。

期待 Trae 的下次更新带来更丰富的 MCP Servers 与更灵动的 Agent 协同体验,让我们看到人与 AI 协作创造的更多无限可能。同时也小小期望一下 Trae 团队能优化提升下模型在 Trae 中的输出速率,带来更好的产品体验。

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### MCP 技术概述 MCP 是由 Anthropic 开发的一种用于构建 AI Agent 的技术框架,旨在简化开发者创建和部署人工智能驱动工具的过程[^2]。通过该框架,可以轻松集成多种大模型(LLMs),包括但不限于 DeepSeek 和其他开源模型。 通义千问作为阿里巴巴集团旗下的超大规模语言模型,在功能性和灵活性上具有显著优势。要将通义千问与 MCP 进行集成,可以通过以下方式实现: --- ### 集成方案分析 #### 1. 使用 Docker Compose 构建环境 为了快速启动并运行 MCP-Bridge 容器,可采用 `docker-compose` 命令来完成基础环境搭建。具体命令如下所示: ```bash docker compose up --build ``` 此操作会自动拉取所需镜像并初始化容器化服务,从而为后续的开发工作提供稳定的运行平台[^1]。 #### 2. 调整服务器端逻辑以适配通义千问 API 基于 MCP 提供的功能接口定义机制,可通过扩展其内置装饰器函数来自定义业务逻辑。例如,下面展示了一个简单的例子——调用通义千问的服务来进行两数比较处理: ```python from mcp.server.fastmcp import FastMCP import requests mcp = FastMCP("comparisonService") @mcp.tool() def compare_with_qwen(num1, num2): payload = { 'prompt': f'比较 {num1} 和 {num2}, 返回哪个更大或者相等', 'max_tokens': 50, 'temperature': 0.7 } response = requests.post( url="https://your-qwen-api-endpoint.com/v1/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json=payload ) result = response.json().get('choices', [{}])[0].get('text', '').strip() return result or "无法获取结果" if __name__ == "__main__": mcp.run(transport='stdio') ``` 上述代码片段展示了如何借助 HTTP 请求向通义千问发送查询请求,并解析返回的结果数据[^3]。 #### 3. 结合资源管理模块增强交互体验 除了核心计算能力外,还可以进一步利用 MCP 中的资源声明特性,增加更多维度上的用户体验优化措施。比如引入问候语生成组件: ```python @mcp.resource("welcomeMessage://{username}") def generate_welcome_message(username): prompt_template = f"欢迎来到我们的应用,请称呼用户为{username}" api_response = call_qwen_api(prompt_template) return api_response ``` 这里假设存在一个辅助方法 `call_qwen_api()` 来封装实际通信细节。 --- ### 总结 综上所述,MCP 不仅能够帮助技术人员迅速建立起强大的 AI 应用程序原型,而且还能灵活对接不同类型的预训练模型,如通义千问这样的高性能解决方案。这使得整个生态体系更加开放多元,同时也促进了行业标准化进程的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值