全球首个开源通用人工智能(AGI)Agent面世,能够像人类一样学习、适应和推理,项目开源

Suna 是一个最新完全开源的AGI Agent,能够轻松协助你完成现实世界中的各类任务。通过自然对话,Suna 可以成为你在研究、数据分析和日常挑战中的数字伙伴——它不仅功能强大,而且拥有直观的界面,能够理解你的需求并交付结果。

Suna 拥有强大的工具包,包括:无缝的浏览器自动化,用于浏览网页和提取数据;文件管理功能,用于创建和编辑文档;网页爬取与扩展搜索能力;命令行操作执行,用于系统任务;网站部署,以及与各种 API 和服务的集成。这些能力协同运作,使 Suna 能够通过简单对话解决复杂问题、实现自动化流程。

Suna :

  • 100% 开源:遵循 Apache 2.0 许可,代码完全公开,允许用户自由使用、修改和分发。

  • 透明且可审计:用户可以审查代码,确保安全性和可靠性,特别适合对数据隐私敏感的场景。

  • 免费使用:提供免费层级(10 分钟/月),降低使用门槛。

  • 社区协作:开源模式鼓励开发者贡献代码,增强功能并修复问题。

  • 灵活性:支持自托管和云服务,可满足不同用户需求。

Suna 能够处理多种现实世界的复杂任务,以下是一些典型用例:

任务描述

潜在客户数据丰富

使用 LinkedIn 数据查找公司信息、CEO/销售负责人等,生成详细描述。

市场竞争分析

分析英国医疗行业主要参与者、市场规模、优劣势,并生成 PDF 报告。

VC 基金列表

列出美国顶级 VC 基金(按 AUM 排序),包括网站 URL 和联系信息。

股市分析报告

生成 S&P 500 趋势和市场预测报告,供银行 CFO 使用。

公司旅行规划

为 8 人团队规划 2025 年 4 月 21-28 日从巴黎到加州的 7 天行程,考虑天气因素。

会议演讲者查找

查找过去一年欧洲 AI 伦理会议的 20 位演讲者,结合活动网站、LinkedIn 和 YouTube 数据。

科学研究

研究过去 5 年关于酒精影响的科学论文,生成详细报告。

B2B 潜在客户生成

在巴塞罗那生成 20 个 AI 客户支持领域的 B2B 潜在客户(公司规模 10-50 人),包括公司名称、网站和联系信息。

如何使用

环境要求
  • Supabase 项目:用于数据库管理。

  • Redis 数据库:推荐使用 Upstash Redis 或本地安装。

  • Daytona 沙箱:用于浏览器自动化,需在 Daytona 创建账户。

  • Python 3.11:运行后端服务。

  • LLM API 密钥:支持 OpenAI (OpenAI 平台) 或 Anthropic (Anthropic),推荐通过 LiteLLM 集成。

  • 可选 API 密钥:Tavily(搜索 API)和 RapidAPI(例如 LinkedIn 数据服务)。

安装步骤

克隆仓库

git clone https://github.com/kortix-ai/suna.git
cd suna

配置后端

cd backend
cp .env.example .env

编辑 .env 文件,填入以下凭据:

  • SUPABASE_URL 和 SUPABASE_KEY(从 Supabase 仪表板获取)。

  • REDIS_HOST 和 REDIS_PORT(从 Upstash 或本地 Redis 获取)。

  • DAYTONA_API_KEY(从 Daytona 获取)。

  • ANTHROPIC_API_KEY 或 OPENAI_API_KEY(从相应平台获取)。

  • TAVILY_API_KEY 和 RAPID_API_KEY(可选)。

设置 Supabase

supabase login
supabase link --project-ref your_project_reference_id
supabase db push

配置前端

cd ../frontend
cp .env.example .env.local

编辑 .env.local 文件,填入:

  • NEXT_PUBLIC_SUPABASE_URL

  • NEXT_PUBLIC_SUPABASE_ANON_KEY

  • NEXT_PUBLIC_BACKEND_URL="http://localhost:8000/api"

  • NEXT_PUBLIC_URL="http://localhost:3000"

安装依赖

cd frontend
npm install
cd ../backend
pip install -r requirements.txt

启动应用

  • 在一个终端运行前端:

    cd frontend
    npm run dev
    
  • 在另一个终端运行后端:

    cd backend
    python api.py
    

访问应用
在浏览器中访问 http://localhost:3000,通过 Supabase 认证注册账户。

在云端使用 Suna

Kortix 云服务

Suna 提供由 Kortix 托管的云服务,适合不想自托管的用户。云服务通过 Suna 官方网站 访问,分为以下定价层级:

层级价格使用时长适用场景

免费

$0

10 分钟/月

个人用户,试用或轻量任务

专业版

$29/月

4 小时/月

专业人士或小型团队

企业版

$199/月

40 小时/月

复杂需求或大型团队

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值