自从DeepSeek火遍大江南北,人人都在使用大模型,也有很多同志在像晓智同学一样,开始私有化部署。
当然选择私有化部署使用最多的是ollama部署,但是对于并发相对高的场景,vllm是非常不错的选择。现就将晓智同学一步步部署并成功上线实施的方案分享如下:
一、环境构建
1、安装ubuntu24.04操作系统,并安装对应的基础软件,比如输入法等(可以不安装)。
2、安装显卡驱动
-
检查显卡驱动是否已经识别,如果已经识别,则不需要安装:以下表示已经识别
root@admin-Legion-Y9000P-IRX9:/home/admin/下载# lspci | grep -i nvidia
01:00.0 VGA compatible controller: NVIDIA Corporation AD107M [GeForce RTX 4060 Max-Q / Mobile] (rev a1)
01:00.1 Audio device: NVIDIA Corporation Device 22be (rev a1)
- buntu 24.04可能默认使用开源驱动(
nouveau
),需手动安装闭源驱动:
sudo apt update
sudo ubuntu-drivers autoinstall # 自动安装推荐驱动
- 禁用开源驱动(nouveau)
sudo nano /etc/modprobe.d/blacklist-nouveau.conf
添加以下内容
blacklist nouveau
options nouveau modeset=0
- 更新initramfs并重启:
sudo update-initramfs -u
sudo reboot
- 验证GPU工作状态(已正常工作)
admin@admin-Legion-Y9000P-IRX9:~/桌面$ nvidia-smi
Tue Apr 1 13:31:53 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.120 Driver Version: 550.120 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GeForce RTX 4060 ... Off | 00000000:01:00.0 Off | N/A |
| N/A 37C P0 588W / 55W | 9MiB / 8188MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 2471 G /usr/lib/xorg/Xorg 4MiB |
+-----------------------------------------------------------------------------------------+
二、安装 vLLM 和相关依赖
- 使用conda环境隔离安装部署
1、下载并安装conda环境
- 下载 Miniconda 安装脚本:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
admin@admin-Legion-Y9000P-IRX9:~/桌面$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
--2025-05-01 13:47:13-- https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
正在解析主机 repo.anaconda.com (repo.anaconda.com)... 104.16.191.158, 104.16.32.241, 2606:4700::6810:20f1, ...
正在连接 repo.anaconda.com (repo.anaconda.com)|104.16.191.158|:443... 已连接。
已发出 HTTP 请求,正在等待回应... 200 OK
长度: 154615621 (147M) [application/octet-stream]
正在保存至: ‘Miniconda3-latest-Linux-x86_64.sh’
- 运行安装脚本:
bash Miniconda3-latest-Linux-x86_64.sh
- 按照提示完成安装,然后重新打开终端,Conda 就可以正常使用了
2、创建一个新的 conda 环境
以后所有的模型相关操作都将在该conda(myenv)
环境中运行。
conda create -n myenv python=3.10 -y
- 根据提示,进行conda升级(可选)
(base) admin@admin-Legion-Y9000P-IRX9:~$ conda update -n base -c defaults conda
Channels:
- defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done
- 激活虚拟环境
conda activate myenv
- 安装带有 CUDA 12.1 的 vLLM
pip install vllm
三、模型部署
1、模型下载
下载 DeepSeek 模型,此处下载deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
模型
- 模型地址: https://modelscope.cn/models/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
- 安装 ModelScope 包: ModelScope 是一个模型中心,我们使用它来下载模型。在终端或命令提示符中执行以下命令安装 ModelScope Python 包:
pip install modelscope
- 下载模型: 使用
modelscope download
命令下载模型。
modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir /home/xhq/deepseek-7b
- --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B: 指定要下载的模型为 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B。
- --local_dir your_local_path: 指定模型下载后保存的本地路径。请将 your_local_path 替换为您电脑上实际想要保存模型的路径。 例如,如果您想将模型保存在 /home/user/models/deepseek-7b 目录下,则命令应为:
- 关于 ModelScope: ModelScope 是一个模型即服务的开源社区,您可以在上面找到各种预训练模型。您可能需要注册 ModelScope 账号才能下载某些模型,但 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B 模型目前是公开的,可以直接下载。
2、模型运行
在conda环境
(myenv) admin@admin-Legion-Y9000P-IRX9:~中,进入模型所在的目录,运行以下命令
vllm serve DeepSeek-R1-Distill-Qwen-1.5B \
--max-model-len 4096 \
--gpu-memory-utilization 0.7 \
--max-num-batched-tokens 1024 \
--max-num-seqs 4 \
--port 8000 \
--tensor-parallel-size 1 \
--trust-remote-code
- /path/to/De
- epSeek-R1-Distill-Qwen-7B:替换为实际的模型路径。
- --max-model-len:设置
- 模型的最大输入长度。
- --port:设置API的端口号。
- --tensor-parallel-size:设置张量并行的GPU数量。
- --trust-remote-code:信任远程代码,用于加载模型。
3、调用 vLLM 推理服务
- 以下是postman调用示vllm推理服务示例:
url:http://localhost:8000/v/completions
headers: Content-Type:application/json
body:{
"model": "DeepSeek-R1-Distill-Qwen-1.5B",
"prompt": "你是谁",
"max_tokens": 1024,
"temperature": 0.7,
"stream":true
}
到这里整个过程就完成了,可以通过dify等应用构建平台对接本地大模型并编排应用,后续将持续更新dify编排应用相关操作和大模型其他信息!
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓