做智能体最难的事情,并不是如何怎么学会做智能体,工具的学习往往是简单的,如何找到智能体真正有用的应用场景和业务需求才是核心能力。我们目前在各大智能体开发平台上的智能体,说实话,更多是玩具的属性。
在AI大模型领域,企业端正在探索的方向主要有:
1.企业的知识管理与数据治理 | 老生常谈的方向 |
2.垂域模型打造 | 利用企业私有的数据、知识、通用大模型,训练极速的垂域模型 |
3.智能体构建 | 业务驱动的,能够部分解放员工的智能体 |
4.智能体多元协同 | 基于MCP、A2A协议、物联网等,打造超级智能体 |
其中基于垂直行业或岗位的相关智能体构建,只属于精通此业务的人。通用智能体,我觉得是个伪命题,在5年内不会有突破,欢迎大厂早日打我脸。垂域方向的智能体倒是有点希望,比如专门解决大数据处理和可视化分析的智能体。
最近看了整整一天某头部财务企业的AI产品发布会,正好借这个机会,捋一下企业级的智能体刚需应用场景,希望能打开大家的思路和灵感,也准备当做《人人都会做智能体》科普公开课的内容。
刚需1:重复低级的工作流程
在AI大模型没有爆发前,这个方向的场景就已经被探索很多年了,比如大家所熟知的RPA、自动化脚本,以及借助专门训练过的神经网络,来解决企业在财务报销、合同审计、文档归结、智能招聘等工作场景中产生的大量的重复的工作内容。
这个方向的工作场景特点可以总结为6个字:重复、低级、量大
就以大家熟悉的人力资源招聘为例,从企业职位发布、简历筛选评价等场景就可以总结出以下智能体开发场景。
场景 | 智能体 | 简介 |
职位发布 | JD生成Agent | 根据企业信息和要求,自动生成完整的职位招聘需求详情 |
简历筛选 | 简历筛选Agent | 根据企业用人需求,从多维度对候选人简历进行评分,生成评价报告 |
面试辅助 | 面试辅助Agent | 根据候选人信息,自动生成面试问题,总结面试过程,输出评估建议 |
刚需2:基于数据的分析与决策
从企业的实际落地来看,数据决策类智能体是容易上手的方向,包含经营分析、业绩预测、报表生成、数据整合、趋势分析、风险预警等。这个更像是传统的商业数据分析的主要事情。
这个方向的工作场景可以总结为这几个关键字:定量分析、变量有限、数据准确、业务明确。
首先为什么是定量分析而不是定性分析,因为定量分析是最能直观感受智能体效果的,数字是不会骗人的。而定性分析的智能体,产生的结果,一般AI味很重,大模型的幻觉明显。
数据准确和业务明确要求智能体的工作流一定是清晰明确的,只有清晰明确的路径才能保证每次智能体输出的结果的稳定性,降低错误成本和技术债。从这方面看,从管理会计这门课程去出发,反而容易找到很多智能体的应用场景。
数据决策类智能体,离不开数据的准确处理和分析,但是大模型并不擅长,而且企业的生产用语是非常专业和私有的,通用大模型也不一定能准确理解提示词中的生产用语,智能体开发中,用户意图的识别反而成了一件难事。
但是我相信短则半年,长则一年,擅长千万行级别的数据分析开源垂域大模型ChatBI即将问世,效果和震撼度不亚于在Vibe Coding领域的Claude 3.7。
下面是一些容易想到的,场景相对具体的数据决策类智能体。
场景 | 智能体 | 简介 |
经营分析 | 销售数据对比Agent | 对比各时间段的销售数据,分析销售额变化趋势,快速定位异常时间段或增长点。 |
业绩预测 | 单品销售预测Agent | 基于历史单品销售数据,预测未来某个单品的销量,帮助制定库存计划和促销策略。 |
报表生成 | 部门月度报表生成Agent | 自动生成某个部门的月度财务或绩效报表,供部门负责人审阅和决策。 |
数据整合 | 客户信息整合Agent | 整合来自不同渠道的客户信息,形成统一的客户资料档案,支持客户跟进或营销活动。 |
趋势分析 | 产品偏好趋势分析Agent | 分析客户对产品的购买偏好,识别热门产品和冷门产品,帮助调整产品线和营销策略。 |
风险预警 | 库存风险预警Agent | 针对库存数据,识别可能的缺货或积压风险,提前发出预警,避免损失。 |
刚需3:客户洞察与营销
这个方向其实就是CRM方向的场景,主要方向包括客户画像、消费习惯分析、需求预通、营销策略生成、订单智能录入等。这个方向,就是我们提到的定性分析,在当前的技术阶段,是个比较难做出效果的。
这个方向的工作场景,主要特点都是围绕客户展开。
不管是客户画像、消费习惯、需求预测,其实是10年前的大数据技术主要解决的事情。想要得到有价值的客户画像、消费习惯,必须要有海量的数据和算法,这是中小企业都不具备的。
对于中小企业来说,最有使用价值的是产品客服助手、潜在客户获取和产品营销方向。以下是我们能想到的一些智能体应用场景。
场景 | 智能体 | 简介 |
产品客服助手 | 智能问答客服Agent | 自动解答客户关于产品常见问题,提供实时咨询服务,减少人工客服负担。 |
产品客服助手 | 售后问题诊断Agent | 收集客户对产品的问题描述,自动分析并判断问题类型,提供对应的解决方案或保修建议。 |
潜在客户获取 | 客户线索挖掘Agent | 从企业现有数据中挖掘潜在客户,标记高价值客户,支持销售团队跟进。 |
产品营销 | 营销文案生成Agent | 根据产品特点及目标客户群体,快速生成个性化的营销文案,提高营销活动的效率和效果。 |
产品营销 | 优惠活动推荐Agent | 根据客户历史消费数据,推荐最可能吸引客户的促销优惠活动,提升活动转化率。 |
产品营销 | 邮件/短信营销Agent | 基于客户分组和偏好,自动生成邮件或短信内容,精准触达目标用户,提高营销活动的到达率和转化率。 |
刚需4:财务风险与合规
这个方向的智能体在企业中,也是绝对刚需中的刚需,主要包括财务风险与合规、费用合规审核、凭证检直、成本还源、账务处理、资金风险检测等等。这些智能体其实可以应用到企业会计、审计、法务、投资等多个岗位,是一个非常大的市场。
这类智能体的特点是和钱直接相关,虽然市场大,但是对智能体的要求也非常高。以下是我们能想到的一些智能体应用场景。
场景 | 智能体 | 简介 |
财务风险与合规 | 财务风险预警Agent | 监控企业财务数据,识别潜在的财务风险(如资金链断裂、现金流不足等),并提供预警和应对建议。 |
费用合规审核 | 费用报销合规审核Agent | 对员工报销单据进行自动审核,识别不合规条目并标记问题原因,减少人工审核成本。 |
凭证检直 | 凭证合法性校验Agent | 自动校验财务凭证的合法性和真实性,防范虚假凭证或重复凭证的风险,确保账务数据准确性。 |
成本还原 | 成本追溯分析Agent | 分析企业产品或服务的成本构成,追溯各成本环节来源,帮助企业优化成本结构和定价策略。 |
账务处理 | 智能账务处理Agent | 自动完成日常账务处理(如分类账录入、对账、结账),提升财务部门工作效率,避免人工错误。 |
资金风险检测 | 资金流动性监控Agent | 监控企业资金流动情况,识别异常资金流动或潜在的流动性风险,确保资金链安全稳定。 |
刚需5:生产与供应链优化
这个方向的智能体,不同的企业需求是不一样的,虽然是刚需,但是个性化确非常强,只有定制才能满足企业的需求。
生产与供应链优化主要包含智能排产、设备故障预测、工艺参数优化、供应链调度、物料管理、库存管理等。这类智能体的特点就是个性化、与业务强关联!
我们能想到的具体智能体场景主要有下面这些,不过颗粒度还是比较粗,实际开发的话,还需要进一步细化。
场景 | 智能体 | 简介 |
智能排产 | 生产排产优化Agent | 根据订单需求和生产能力,动态优化生产排产计划,提高生产效率和产能利用率。 |
设备故障预测 | 设备健康监控Agent | 基于设备运行数据,预测设备故障发生的可能性,减少计划外停机时间和维护成本。 |
工艺参数优化 | 工艺参数优化Agent | 分析生产过程中的工艺参数,优化关键工艺环节,降低能耗和提升产品质量。 |
供应链调度 | 智能供应链调度Agent | 基于订单需求和供应链资源,优化供应链调度,降低物流和供应成本,提升交付效率。 |
物料管理 | 物料需求预测Agent | 根据生产计划和历史数据,预测物料需求,避免原料短缺或积压。 |
库存管理 | 智能库存优化Agent | 动态监控库存状态,优化库存结构,降低库存持有成本和物料浪费。 |
总结
总体而言,企业级的智能体开发,需要对接企业现有的ERP、MES(制造执行系统)或WMS(仓储管理系统)等,确保数据流畅整合,而且也需要根据企业的行业特点(如电子制造、汽车、医药等),提供定制化的智能体功能模块,每个智能体的优化目标(如降低能耗、提高设备利用率、减少库存)需要与企业业务目标清晰绑定,确保投入产出比最高。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】