大模型解码Decoding方法总览

近年来,由于基于大型Transformer的语言模型(如OpenAI的ChatGPT和Meta的LLaMA)在数百万网页上进行训练,人们对开放式语言生成的兴趣越来越大。基于条件的开放式语言生成的结果令人印象深刻,表现出对新任务的泛化能力、处理代码的能力,或接受非文本数据作为输入。除了改进的Transformer架构和大量的无监督训练数据,更好的解码方法也发挥了重要作用。

在大语言模型(如GPT)中,解码是生成文本的关键步骤。解码方法决定了模型如何从可能的词汇中选择下一个单词。以下是三种常见的解码方法:贪婪搜索、束搜索(Beam Search)和采样(Sampling)。

1. 贪婪搜索 (Greedy Search)

贪婪搜索是最简单的解码方法。在每个时间步,它只选择概率最高的单词作为下一个单词。这种方法直截了当,但也可能错过全局最优解,因为一旦选择了某个词,就不会再考虑其他可能性。

优点:

  • 速度快,计算简单。

缺点:

  • 容易陷入局部最优解,生成的文本可能缺乏多样性。

2. 束搜索 (Beam Search)

束搜索是一种改进的贪婪搜索方法,它在每一步都保留多个(称为“束宽”)概率最高的候选序列,而不是只保留一个。在下一步时,这些候选序列会继续扩展,并再次保留概率最高的若干序列。最终,选择整个序列中总体概率最高的序列。

优点:

  • 在保持效率的同时,生成的文本质量通常比贪婪搜索更好。

  • 能够探索多种可能性,减少陷入局部最优的风险。

缺点:

  • 计算复杂度高于贪婪搜索,尤其是当束宽较大时。

  • 仍然可能产生较为单一的输出,缺乏多样性。

3. 采样 (Sampling)

采样是一种更加随机的解码方法。在每个时间步,根据条件概率分布随机选择下一个单词。这种方法引入了随机性,因此每次生成的序列可能都不一样。常见的采样策略包括温度采样(Temperature Sampling)和核采样(Top-k或Top-p Sampling),它们通过调整选择的随机性来平衡质量和多样性。

优点:

  • 生成的文本更加多样,适合创造性任务。

  • 可以通过调整温度或核采样参数来控制随机性。

缺点:

  • 如果随机性过大,生成的文本可能不连贯或不合理。

  • 需要仔细调节参数以达到最佳效果。

总结

  • 贪婪搜索:简单快速,但可能生成较为单一的文本。

  • 束搜索:权衡效率和质量,适合需要平衡准确性和多样性的任务。

  • 采样:生成多样性高的文本,适用于创造性生成,但可能需要调节参数以保持连贯性。

以下所有功能都可以用于自回归语言生成(这里有一个简短回顾)。简而言之,自回归语言生成基于这样的假设:一个词序列的概率分布可以分解为下一个词的条件概率分布的乘积。

我们将介绍目前最常用的解码方法,主要包括贪婪搜索、束搜索和采样。

贪婪搜索
贪婪搜索是最简单的解码方法。它在每个时间步ttt 选择概率最高的词作为下一个词:


下面的示意图展示了贪婪搜索的过程。

从单词 ‘The’ 开始,算法贪婪地选择下一个概率最高的单词 ‘nice’,依此类推,最终生成的词序列为 (‘The’, ‘nice’, ‘woman’),其总体概率为 0.5 × 0.4 = 0.2。

接下来,我们将在上下文 (‘I’, ‘enjoy’, ‘walking’, ‘with’, ‘my’, ‘cute’, ‘dog’) 上使用GPT2生成词序列。让我们看看如何在Transformers库中使用贪婪搜索。

在这里插入图片描述

然而,贪婪搜索的主要缺点是它可能会错过被低概率词隐藏的高概率词,正如我们上面的示意图所示:

单词 ‘has’ 具有0.9的高条件概率,但它被单词 ‘dog’ 隐藏了起来,而‘dog’的条件概率只是第二高,因此贪婪搜索错过了词序列 ‘The’, ‘dog’, ‘has’。

我们可以使用束搜索来缓解这个问题!

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

束搜索
束搜索通过在每个时间步保留 num_beams 个最有可能的假设,从而减少了错过隐藏的高概率词序列的风险,并最终选择总体概率最高的假设。我们用 num_beams=2 来说明这一点:

在时间步1,除了最有可能的假设 (‘The’, ‘nice’),束搜索还会跟踪第二可能的假设 (‘The’, ‘dog’)。在时间步2,束搜索发现词序列 (‘The’, ‘dog’, ‘has’) 的概率为 0.36,高于 (‘The’, ‘nice’, ‘woman’),其概率为 0.2。太好了,在我们的示例中,它找到了最有可能的词序列!

束搜索总能找到比贪婪搜索概率更高的输出序列,但不一定能找到最可能的输出。

让我们看看如何在Transformers中使用束搜索。我们将 num_beams 设置为大于1,并将 early_stopping=True,这样当所有束搜索的假设都到达EOS(结束)标记时,生成过程就会结束。
在这里插入图片描述

采样
在最基本的形式中,采样意味着根据条件概率分布随机选择下一个单词 wtw_twt:

以上面的例子为例,下面的图示化了采样时的语言生成过程。

使用采样进行语言生成不再是确定性的。单词(“car”)是从条件概率分布P(w∣"The")P(w \mid \text{“The”})P(w∣"The") 中采样的,然后从P(w∣"The",“car”)P(w \mid \text{“The”}, \text{“car”})P(w∣"The",“car”) 中采样(“drives”)。

在Transformers中,我们将 do_sample=True,并通过 top_k=0 关闭

Top-K采样(稍后会详细讲解)。在接下来的部分,我们将固定随机种子以便于说明。你可以更改 set_seed 参数以获得不同的结果,或者去掉它以实现非确定性。

在这里插入图片描述

一个技巧是通过降低所谓的softmax温度来使分布P(w∣w1:t−1) 更加尖锐(即增加高概率词的可能性,减少低概率词的可能性)。

Fan et al (2018) 介绍了 简单但非常强大的采样方案,称为 Top-K 采样。在 Top-K 抽样中,对 K 个最有可能的下一个单词进行过滤,然后 概率质量仅在接下来的 K 个单词中重新分配。GPT2的 采用这种抽样方案,这也是其 在故事生成方面取得成功。

在示例中,我们扩展了用于两个采样步骤的单词范围 以上从 3 个字到 10 个字,以更好地说明 Top-K 抽样。

Top-p(原子核)采样

在 Top-p 抽样中,不是仅从最可能的 K 个单词中抽样,而是从最小的可能单词集中选择这些单词,这些单词 累积概率超过概率 P。概率质量 然后在这组单词之间重新分配。这样一来,这个 单词集(也称为集合中的单词数)可以动态地 根据下一个单词的概率增加和减少 分配。好吧,这很罗嗦,让我们想象一下。

已设置p=0.92p=0.92,Top-p 抽样选择_最小_数量 共同超越的话语p=92%p=92%概率质量,定义为VTOP-PVTOP-P.在第一个示例中,这包括 9 个最 可能的单词,而它只需要选择第二个中的前 3 个单词 示例超过 92%。其实很简单!可以看出,它 保留了广泛的单词范围,而下一个单词可以说更少 可预测的,例如 P(w∣“的”)P(w∣“的”),而只有几句话的时候 下一个词似乎更可预测,例如 P(w∣“的”,“汽车”)P(w∣“The”,“car”).

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

<think>好的,我现在需要回答用户关于大模型推理成本构成及优化方法的问题。首先,我需要明确用户的问题点,他们想知道大模型推理时的成本由哪些部分组成,以及有哪些方法可以优化这些成本。接下来,我应该先拆解大模型推理的成本构成,然后针对每个部分讨论优化方法。 首先,成本构成可能包括计算资源、内存消耗、能源消耗、时间延迟等。计算资源方面,大模型推理需要大量的GPU或TPU算力,尤其是在处理大规模请求时,计算资源的使用会显著增加成本。内存消耗方面,模型参数和中间激活值需要存储在显存中,显存不足会导致无法运行或需要更高端的硬件,这也提高了成本。能源消耗方面,高算力需求通常伴随着高功耗,尤其是在数据中心环境下,电费是一个重要成本因素。时间延迟方面,响应时间过长可能影响用户体验,特别是在实时应用中,可能需要更多的资源来减少延迟,从而间接增加成本。此外,还有模型维护、硬件购置和折旧等成本需要考虑。 接下来是优化方法。根据引用[1]提到的算子优化,包括模型压缩、并行计算、推理引擎优化等。模型压缩方法如量化和剪枝,量化可以将模型参数从高精度(如FP32)转换为低精度(INT8),减少内存占用和计算量,如引用[3]提到的activation量化与normalization层融合,进一步优化。剪枝通过移除不重要的参数或神经元,降低模型复杂度。知识蒸馏则用大模型训练小模型,保留性能的同时减少计算需求。 并行计算方面,模型并行将模型拆分到多个设备,数据并行处理多个输入,流水线并行划分计算阶段,这些都能提高资源利用率。动态批处理,根据实时负载调整批处理大小,提升吞吐量。 推理引擎优化,如使用TensorRT、ONNX Runtime等,它们通过算子融合、内存优化、自动混合精度等技术加速推理。例如,算子融合减少显存访问次数,混合精度平衡速度和精度。 另外,推测解码(如引用[2]提到的Speculative Decoding)可能也是一种方法,用小模型预测大模型的输出,验证并修正,减少大模型的计算次数。 其他优化包括缓存机制,缓存频繁使用的中间结果;请求调度,优先处理高优先级任务;硬件选择,如使用专用AI芯片提高能效比。 在回答时,我需要确保结构清晰,分点列出成本构成和优化方法,并引用相关的参考文献。同时,生成的相关问题需要覆盖成本分析、具体优化技术、应用场景以及与其他技术的比较等方面,帮助用户进一步探索。</think>### 大模型推理的成本构成及优化方法 #### 一、大模型推理成本构成 1. **计算资源成本** 大模型推理需要消耗大量GPU/TPU算力,尤其是处理高并发请求时。例如,生成式任务(如文本生成)的计算复杂度与输出长度呈指数关系[^2]。 2. **内存消耗成本** - **模型参数存储**:千亿参数规模的模型需占用数十GB显存,例如GPT-3需约350GB显存(需多卡并行)[^1]。 - **中间激活值存储**:推理过程中生成的中间结果进一步增加显存压力,可能需采用显存优化技术(如分片计算)[^3]。 3. **能源与硬件成本** 高算力需求导致电力消耗显著,例如单次大模型推理可能消耗数十千瓦时电能。专用硬件(如A100/H100)的购置和维护成本也较高。 4. **时间延迟成本** 实时应用(如对话系统)对延迟敏感,若推理速度不足,需通过增加计算资源(如更多GPU并行)来补偿,进一步推高成本。 #### 二、优化方法 1. **模型压缩与量化** - **量化**:将模型参数从FP32转换为INT8/INT4,降低计算和存储需求。例如,激活量化可与归一化层融合,减少计算链长度。 - **剪枝**:移除冗余参数(如权重接近零的神经元),降低模型复杂度。 - **知识蒸馏**:用小模型(Student)模仿大模型(Teacher)的输出,保留性能的同时减少计算量。 2. **并行计算与动态批处理** - **模型/数据并行**:将模型拆分到多设备,或并行处理多个输入请求[^1]。 - **动态批处理**:根据实时负载动态调整批处理大小,最大化GPU利用率。 3. **推理引擎优化** 使用TensorRT、ONNX Runtime等工具实现: - **算子融合**:合并多个计算步骤(如矩阵乘+激活函数),减少显存访问次数。 - **混合精度计算**:对关键部分保留FP16/FP32,其他部分使用低精度,平衡速度与精度[^3]。 4. **推测解码(Speculative Decoding)** 用小模型生成候选输出,大模型仅验证和修正,减少大模型调用次数。例如,可降低30-40%的推理延迟[^2]。 5. **硬件与系统级优化** - **专用AI芯片**:采用TPU、NPU等针对矩阵运算优化的硬件。 - **缓存机制**:缓存高频使用的中间结果(如注意力矩阵),避免重复计算。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值