保姆级教程:从零开始部署Ollma和Qwen大模型

我们平时使用的ChatGPT、kimi、豆包等Ai对话工具,其服务器都是部署在各家公司的机房里,如果我们有一些隐私数据发到对话中,很难保证信息是否安全等问题,如何在保证数据安全的情况下,又可以使用大语言模型,Ollma(哦拉玛)可以告诉你答案!

这是一个保姆级的教程,从下载到成功运行Qwen2.5大模型,更适合没有玩过Ollma的小白宝宝哦~

1. Ollma 是什么?

一句话介绍:一个可以让你在本地启动并运行大型语言模型的工具!

Ollma是一个开源的大模型服务工具,他可以让你在一行代码不写的情况下,在本地通过一条命令即可运行大模型

Ollma会根据电脑配置,自动选择用CPU还是GPU运行,如果你的电脑没有GPU,会直接使用CPU进行运行(可能有点慢)

2. 安装教程

Ollma官网:[https://ollama.com/]

模型仓库:[https://ollama.com/library]

2.1 首先去官网下载

从主页点击下载,直接跳转到了当前系统所兼容的下载界面,点击download,一键下载

2.2 下载好之后安装

博主的电脑是Mac,下载好之后,直接把压缩包解压,然后移动到应用程序中即可,其他操作系统,参考这个文档:

[Windows 下的安装与配置](https://datawhalechina.github.io/handy-ollama/#/C2/2.%20Ollama%20%E5%9C%A8%20Windows%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Linux 安装Ollma ](https://datawhalechina.github.io/handy-ollama/#/C2/3.%20Ollama%20%E5%9C%A8%20Linux%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)``[Docker 安装 Ollma](https://datawhalechina.github.io/handy-ollama/#/C2/4.%20Ollama%20%E5%9C%A8%20Docker%20%E4%B8%8B%E7%9A%84%E5%AE%89%E8%A3%85%E4%B8%8E%E9%85%8D%E7%BD%AE)   

下载好之后,打开,当这个帅气的小羊驼显示在你的任务栏中的时候,说明已经启动成功了!

image.png

2.3 测试一下

打开命令行,输入ollama -h看到以下界面,就可以进行下一步,操作了~

3. 导入开源Qwen 2.5 - 0.5B 大模型

3.1 去模型仓库搜索模型

我们在上面提到的Ollma模型仓库中找到最新的千问大模型

点进去,界面如下:

3.2 加载模型

将上面的命令复制到命令行,回车执行!等待下载

等进度100%了,即可使用模型

3.3 使用模型

在命令行中,即可开启与千问大模型的对话,看到这里,是不是感觉很简单,快去点个赞!

输入/bye方可结束对话。

都看到这里了,点个赞再走吧!码字实属不易呀。

4. 部署webUI可视化对话

本文使用FastAPI 部署Ollma可视化页面,简单4步即可

1、克隆仓库

git clone https://github.com/AXYZdong/handy-ollama  

克隆完成进入目标目录:

cd handy-ollama/notebook/C6/fastapi_chat_app  

2、安装依赖

pip install -r requirements.txt  
pip install 'uvicorn[standard]'  

3、修改app.py 代码

输入vim websocket_handler.py命令(确保你在fastapi_chat_app目录下先)更改model代码

#!/usr/bin/env python  
# -*- coding: utf-8 -*-  
import ollama  
from fastapi import WebSocket  
  
async def websocket_endpoint(websocket: WebSocket):  
    await websocket.accept()  
    user_input = await websocket.receive_text()  
  
    stream = ollama.chat(  
        model='qwen2.5:0.5b',  
        messages=[{'role': 'user', 'content': user_input}],  
        stream=True  
    )  
  
    try:  
        for chunk in stream:  
            model_output = chunk['message']['content']  
            await websocket.send_text(model_output)  
    except Exception as e:  
        await websocket.send_text(f"Error: {e}")  
    finally:  
        await websocket.close()  

4、运行模型

输入命令:

uvicorn app:app --reload``   

即可开始对话:

点个赞再走吧!

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

### Python Ollama 教程概述 Ollama 是一个用于自然语言处理的强大工具库,能够帮助开发者快速构建基于大模型的应用程序。对于希望利用该库进行开发的技术人员来说,掌握其基本操作至关重要。 #### 安装与配置 为了开始使用 Ollama,在本地环境中安装相应的 Python 库是第一步。通常情况下,默认设置已经足够满足大多数应用场景的需求[^1]: ```bash pip install ollama-python ``` #### 基本交互示例 通过简单的 API 调用可以轻松实现与已部署的大规模语言模型之间的对话交流。下面是一个具体的例子,展示了如何向名为 `phi3` 的模型发送消息并获取响应[^2]: ```python import ollama response = ollama.chat( model="phi3", stream=False, messages=[ {"role": "user", "content": "你是谁"} ], options={ "temperature": 0 } ) print(response) ``` 这段代码实现了与指定模型的一次简单问答过程,其中设置了温度参数为零来减少随机性影响。 #### 提示词生成与优化 除了基础的功能外,Ollama 还提供了高特性支持更复杂的任务——比如自动生成高质量的提示词以及对其进行优化调整。这使得应用程序可以根据不同情境动态创建最合适的输入内容[^3]。 ```python from ollama import PromptGenerator, TemplateHandler generator = PromptGenerator() template_handler = TemplateHandler() # 使用预定义模板生成提示词 prompt_text = template_handler.apply_template("introduction", name="Alice") optimized_prompt = generator.optimize(prompt_text) print(optimized_prompt) ``` 上述脚本片段说明了怎样借助内置类完成从模板应用到最终输出整个流程的操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值