大模型专业术语LLM、MCP、EMB是什么?技术原理是什么?普通人也能听懂的科普

在很多介绍AI的文章中,会频繁出现一些名词,比如LLM、MCP、EMB。这些专业术语是什么意思,有什么作用,背后的技术原理又是什么,对普通人来说有点难以理解。

这篇文章,我会尽量用通俗易懂的语言,讲清楚这些名词到底是什么意思,作用是什么,帮助大家更好地理解AI。

一、LLM:大型语言模型

LLM的全称为(Large Language Model),即大型语言模型。 它指的是一种基于深度学习技术的人工智能基础模型,通过大量的文本数据训练,来逐步具备理解和生成自然语言的能力。

LLM的基本定义主要有三个:基于深度学习、处理自然语言、参数规模庞大。其中:

  • 基于深度学习:基于Transformer技术架构的神经网络,通过自注意力机制(Self-Attention)捕捉输入序列中的长距离依赖关系,实现对文本的全局理解。
  • 处理自然语言:执行问答、文本生成、翻译/对话等任务,是生成式AI的形式。
  • 参数规模庞大:为了能很好的理解自然语言,需要将自然语言拆分为最小粒度的参数(Tokens),但自然语言的不同排列组合又包含多种含义,因此一个大模型通常包含几十上百亿甚至数千亿参数。

LLM是自然语言处理(NLP)领域的重要组成部分,目前我们所熟知的各个大厂推出的大模型,大多都是LLM。

LLM的训练过程,就是通过自注意力机制从海量文本数据中捕捉语言模式、研发结构和语义关联,他的核心目标是通过概率建模,预测下一个词语或序列,最终生成连贯且符合上下文的文本。

这也是为什么说大模型是一个概率预测机器,为什么会出现信息幻觉的原因。

当然,因为训练数据的类型不同,大模型也有不同的能力倾向,比如金融、法律、心理、医疗等类型的数据,训练出来的大模型,其能力在对应领域的准确率更高。很多文章中提到的多模态,简单理解就是它的模型基座可以处理多种不同类型的信息

再进一步来说,像百度文库目前的AI模型所谓的自适应能力,就可以根据用户输入对其进行分析,并自动匹配对应的领域模型

大模型的训练过程,可以简单地分为两个部分:预训练、后训练。

  • 预训练(模仿学习)赋予基础能力,即从零到具备不错的能力,如AlphaGo的模仿学习阶段。
  • 后训练(强化学习)优化行为能力,是从不错到卓越的过程,通过强化学习不断固化好的行为。

在大模型领域,典型的代表性模型,大致可以分为三种:

  • Llama(Meta):开源模型,支持代码生成与科学推理。
  • BERT(Google):基于双向Transformer的模型,擅长文本分类和语义理解(如搜索引擎优化)。
  • GPT系列(OpenAI):通过生成式预训练实现多轮对话和复杂任务处理,如GPT-4支持多模态输入。

当然,大模型目前来说依然存在局限性,主要是如下几个方面:

  • 信息幻觉:可能生成看似合理但事实错误的文本。
  • 数据偏见:训练数据中的偏见可能导致输出歧视性内容。
  • 计算成本:训练千亿级模型需消耗数千GPU小时,成本高昂。

二、MCP:模型上下文协议

MCP的全称为(Model Context Protocol),即模型上下文协议。通俗理解的话,MCP是一种抽象的技术架构设计理念

MCP是一种开放标准协议,旨在解决大型语言模型(LLM)与外部数据源和工具之间的通信问题,通过提供统一的接口和协议,使AI系统能够轻松地与各种外部资源进行交互,由Anthropic公司开发并开源。

MCP的基本定义:标准化的通信协议,用于建立AI模型与外部数据源之间的无缝连接。

它通过定义通用接口,允许AI助手动态访问和集成外部数据源(数据库、API、文件系统)以及工具和服务(计算工具、搜索引擎),从而扩展AI的功能并提高其效率,类似于AI领域的USB、Type-C接口

MCP基于客户端-服务器架构,包含以下关键组件:

  • MCP Host:运行LLM的应用程序(如Claude客户端),负责发起任务请求。
  • MCP Client:在Host内维护与服务器的1:1连接,解析任务需求并协调资源调用。
  • MCP Server:作为中间层,向AI Agent动态暴露可用的工具、API和数据源(如本地文件、外部数据库),并提供安全控制和上下文管理。
  • Local/Remote Services:包括本地资源(文件系统)和远程服务(如GitHub、Google Maps API)。

工作流程中,MCP Server通过分层定义能力(如数据读取、函数调用、提示模板),使AI Agent根据任务需求自动匹配工具,并通过Function Calling执行操作,例如查询数据库或调用API,最终生成多步骤的连贯响应。

img

MCP和传统的API接口相比,区别如下:

img

总结一下,MCP的技术优势主要有如下几点:

  • 简化集成:通过统一接口降低AI与外部工具集成复杂性,避免碎片化问题。
  • 安全性与可控性:MCP支持双向连接,确保数据安全,并提供细粒度控制。
  • 灵活性与扩展性:MCP支持自主工作流的决策和编排,适用于多种跨平台场景。

我们可以将MCP当作AI技术领域的万能插座,通过MCP集成各种AI工具和数据源,不用做专门的适配工作

三、EMB:数据嵌入技术

EMB全称为(Embedding),简单理解就是将低质量数据变为可参照利用的高质量基准数据的技术。

专业解释,EMB可以将高维、稀疏的离散数据(文本中的单词、图像特征或类别标签)映射到低维、稠密的连续向量空间的技术。

EMB广泛应用于自然语言处理(NLP)、推荐系统、图像处理、计算机视觉等领域。其核心思想是通过将对象(如词语、句子、用户、物品等)映射为低维向量,捕捉对象之间的潜在语义关系和相似性,从而实现降维、特征提取和建模目标。

这些向量能够捕捉原始数据的语义信息和内在关系,便于机器学习模型进行处理和分析。下图所示EMB的作用:imgEmbedding在自然语言处理(NLP)中的典型应用场景包括:

  • 文本分类将文本转换为词向量(如Word2Vec或GloVe),对文档进行分类,如垃圾邮件过滤、主题分类。
  • 机器翻译:捕捉单词语义和上下文关系,从而提高神经网络机器翻译(NMT)的效果,使翻译结果更接近“人话”。
  • 命名实体识别(NER) :通嵌入技术,模型能够更好理解文本中的实体及其关系,从而提升命名实体识别的准确性。
  • 情感分析:利用词嵌入捕捉单词的情感倾向,帮助模型判断文本的情感极性。
  • 推荐系统:生成用户和物品的向量表示,通过捕捉潜在关系提升推荐系统的准确性。
  • 语义搜索:通过将查询和文档映射到同一向量空间,实现高效的语义相似度计算。
  • 文本相似性计算:利用词嵌入捕捉单词间的语义相似性,用于句子匹配、文本相似性分析等任务。
  • 迁移学习与特征提取:高质量的词嵌入可以迁移至下游任务,无需重新学习词汇含义,从而扩展应用范围。

EMB的技术特点,概括来说主要有三点:

  • 语义保留:通过训练使向量空间中的位置反映数据的内在关系(如“苹果”与“水果”存在包含关系)。
  • 通用性与迁移性:同一嵌入模型可服务于多种下游任务(如分类、聚类、推荐)。
  • 降维与特征提取:将高维稀疏数据(如独热编码的文本)压缩为低维稠密向量,减少计算复杂度。

Embedding技术目前已经在AI的各个领域深入使用,是LLM的核心技术构成之一。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:

在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!

大模型全套学习资料领取

这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

六、deepseek部署包+技巧大全

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

<think>嗯,用户问除了Stable Diffusion之外,大语言模型是否也能用LoRA,以及LoRA的原理。首先,我需要确认用户对LoRA的了解程度。可能他们已经知道LoRA在扩散模型中的应用,比如Stable Diffusion中的微调,但现在想了解在LLM中的情况。 接下来,我应该先回答第一个问题,明确说明LoRA确实可以用于大语言模型,并举一些例子,比如LLaMA、GPT等。然后解释为什么可以,强调其轻量级和高效性,适用于资源有限的情况。 然后是LoRA的原理,这部分需要详细但易懂。需要分解关键点:原模型参数冻结、低秩矩阵分解、矩阵相乘、微调过程。可能用户不太了解低秩分解,所以要用简单的类比,比如“近似表达”或者“压缩”。还要提到可训练参数减少的好处,比如显存和计算资源的节省。 可能用户的实际需求是想在自己的项目中应用LoRA,比如微调一个本地部署的模型,所以需要给出实际的应用场景和优势,比如不需要全量训练,适合小数据集。同时,可能需要补充一些技术细节,比如秩的选择、目标模块的选择,以及如何实现,比如Hugging Face的PEFT库。 还要注意对比其他微调方法,比如全参数微调或Adapter,突出LoRA的优势。另外,用户可能关心实际效果,需要提到一些研究结果或案例,比如在保持原模型性能的同时有效调整特定任务的表现。 最后,确保回答结构清晰,分点解释,避免技术术语过多,保持口语化但准确。检查是否有遗漏,比如是否提到不同的模型架构是否适用,或者有没有潜在的缺点,比如秩的选择影响效果,可能需要用户自己调参。 总结来说,回答需要涵盖:Yes,LLMs可以用LoRA;原理分步骤解释;应用场景和优势;可能的实现工具和库;以及与其他方法的对比。这样用户不仅得到答案,还能理解如何应用。</think>--- ### **1. 大语言模型与LoRA的兼容性** **是的,LoRA(Low-Rank Adaptation)同样适用于大语言模型LLM)**,且已成为轻量化微调的主流技术。实际应用案例包括: - **Meta LLaMA**:通过LoRA实现角色对话、代码生成等任务适配 - **GPT系列**:社区对GPT-2/3进行LoRA微调以实现领域专业化 - **中文模型**:ChatGLM、Qwen等均支持LoRA微调 #### **关键优势对比** | 方法 | 可训练参数量 | 显存占用 | 训练速度 | 适用场景 | |---------------|--------------|----------|----------|------------------------| | 全参数微调 | 100% | 极高 | 慢 | 大规模数据+充足算力 | | Adapter | 3%-5% | 中 | 中 | 多任务适配 | | **LoRA** | **0.1%-1%** | **低** | **快** | 轻量化单任务定制 | --- ### **2. LoRA的核心原理** #### **数学本质** - **核心思想**:用低秩矩阵(Low-Rank Matrices)近似表示模型参数的变化量 设原权重矩阵为 $W \in \mathbb{R}^{d \times k}$,LoRA将其更新量分解为: $$\Delta W = B \cdot A \quad \text{其中} \ B \in \mathbb{R}^{d \times r}, \ A \in \mathbb{R}^{r \times k}, \ r \ll \min(d,k)$$ $r$ 为秩(Rank),控制近似精度与参数量平衡(典型值 $r=8$)。 #### **实现流程** 1. **冻结原参数**:保持预训练权重 $W$ 固定不变 2. **注入适配层**:在Transformer的注意力模块(如 `q_proj`, `v_proj`)旁并联 $B \cdot A$ 3. **前向计算**:实际运算为 $h = Wx + BAx$ 4. **反向传播**:仅更新 $A$ 和 $B$ 的参数 #### **直观类比** - 相当于给模型添加了一个"轻量插件",通过小矩阵调整模型行为 - 类似给相机镜头加滤镜:原镜头(预训练模型)保持完整,滤镜(LoRA)叠加特定效果 --- ### **3. LoRA在大语言模型中的具体应用** #### **典型使用场景** - **角色人格定制**:用角色对话数据微调,实现特定口吻(如客服、历史人物) - **领域知识注入**:法律/医疗文本适配,提升专业术语准确性 - **安全对齐**:添加安全约束层,过滤有害输出 #### **代码示例(使用Hugging Face PEFT库)** ```python from peft import LoraConfig, get_peft_model from transformers import AutoModelForCausalLM # 加载基础模型(如LLaMA-7B) model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") # 注入LoRA配置(仅修改query和value投影层) lora_config = LoraConfig( r=8, # 秩 lora_alpha=32, # 缩放系数 target_modules=["q_proj", "v_proj"], # 目标模块 lora_dropout=0.05, bias="none" ) # 获取LoRA增强模型 lora_model = get_peft_model(model, lora_config) lora_model.print_trainable_parameters() # 输出:可训练参数 ≈ 0.1%总参数量 ``` --- ### **4. LoRA的关键技术细节** #### **秩(Rank)选择** - 低秩($r=2-8$)即可捕捉大部分语义变化 - 实验表明:在文本生成任务中,$r=8$时LoRA效果可达全参数微调的90%以上 - 过高的秩反而可能导致过拟合 #### **目标模块选择** - **注意力层优先**:通常修改 `q_proj`(查询向量)和 `v_proj`(值向量) - **全连接层补充**:对某些任务需调整 `dense` 层(如分类任务) #### **显存优化** - 结合4-bit量化(QLoRA技术): $$ \text{7B模型显存需求} \approx \frac{24GB\ (\text{FP32})}{\text{4bit量化}} \times \frac{0.1\%\ (\text{LoRA参数量})}{} \approx 6GB $$ --- ### **5. 效果对比实验数据** 在Alpaca指令数据集上的测试结果: | 微调方法 | 训练参数量 | 显存占用 | 准确率(%) | |----------------|------------|----------|-------------| | 全参数微调 | 7B | 80GB | 82.1 | | Adapter | 220M | 24GB | 78.3 | | **LoRA** | **8.4M** | **8GB** | **80.7** | 数据来源:_LoRA: Low-Rank Adaptation of Large Language Models_ (Hu et al., 2021) --- #### **总结** 1. **跨模型适用性**:LoRA可广泛用于LLM、扩散模型(如Stable Diffusion)、语音模型等 2. **技术本质**:通过低秩分解实现参数高效微调,平衡效果与资源消耗 3. **实践建议**:优先在注意力层应用LoRA,结合量化技术降低硬件门槛
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值