文章主要探讨了多模态大语言模型(VLLMs)中的跨模态一致性问题。研究表明,尽管像GPT-4V这样的模型在文本和视觉任务中展现了出色的能力,但它们在不同模态下的表现存在显著差异,尤其是在面对相同任务实例时,文本和视觉模态的准确性差距较大。为了深入分析这种现象,文章提出了“跨模态一致性”的新概念,并基于这一概念构建了一个量化评估框架。实验结果表明,GPT-4V在视觉和语言模态下的表现并不一致,尽管两者传递的信息量相同。文章还提出了一种名为“视觉描绘提示(VDP)”的方法,旨在通过加强语言处理能力来提高跨模态一致性,并在多个任务中取得了显著的改善。通过这些研究,文章为如何优化和设计多模态系统提供了重要的见解。
1 跨模态一致性
跨模态一致性是指在不同模态下(如文本和视觉)处理相同任务时,智能体的表现应保持一致,即相同的信息应当能通过不同模态传递并得出相同结果。
-
· 评估框架:文章提出了一个量化的评估框架,核心在于通过转换器将任务实例在不同模态间转换,确保转换过程中信息的完整性,进而评估智能体在不同模态下的表现一致性。
-
· 一致性度量:通过计算任务在不同模态下的输出一致性,定义了一个一致性评分,衡量智能体在视觉和语言模态下对同一任务的处理结果是否一致。
-
· 智能体行为的独立性:方法侧重于分析智能体在处理不同模态时是否表现出独立的推理过程,即语言和视觉模态是否影响智能体的推理和决策。
2 视觉描绘提示
视觉描绘提示是一种新的提示方法,旨在通过在处理视觉任务时引导智能体优先利用语言模态的推理能力,从而提高多模态智能体在视觉任务中的一致性和表现。
-
· 流程设计:VDP方法包括两个主要步骤:首先,智能体会被提示从图像中提取并描述任务内容,将图像信息转换为文本描述;然后,基于该文本描述与原始图像一起,智能体给出任务的最终答案。
-
· 减少图像信息丢失:与传统的视觉任务提示方法不同,VDP不直接要求智能体仅基于图像提供答案,而是通过转化图像中的信息为文本形式,增强智能体在语言模态中的推理能力,确保信息的完整性和推理过程的一致性。
-
· 语言推理强化:VDP的核心思想是通过文本信息的强化,激发智能体在语言模态下的推理优势,从而提升智能体在视觉模态下处理复杂任务的表现,尤其是在需要推理的任务中。
3 结语
本文探讨了多模态智能体中的跨模态一致性问题,提出了一个新的评估框架,并通过实验揭示了视觉和语言模态之间的显著差异及其改进方法。
论文题目: Cross-Modal Consistency in Multimodal Large Language Models
论文链接: https://arxiv.org/abs/2411.09273
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈