豆包大模型升级,字节AI产业链梳理|附25页PDF文件下载


本文提供完整版报告下载,请查看文后提示。

以下为报告节选:

文│申万宏源研究

本报告共计:25页。

**如欲获取完整版PDF文件

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 如何利用豆包大模型构建专利撰写辅助工具 #### 背景介绍 豆包是由字节跳动推出的一款多功能人工智能助手,其核心能力在于自然语言处理领域中的多项技术应用,包括但不限于文章生成、文本润色以及语法纠错等功能[^1]。这些特性使得豆包成为开发特定场景下文字处理工具的理想基础。 #### 构建专利撰写辅助工具的关键要素 为了有效利用豆包大模型来创建一个专门用于专利撰写的辅助工具,可以考虑以下几个方面的设计与实现: #### 数据预处理阶段 在数据准备过程中,应着重收集并整理大量已公开的专利文档作为训练素材。通过分析这些资料的内容结构特点(如权利要求书部分的技术特征描述方式),可以使模型更好地理解专利文件特有的表达形式和逻辑框架[^2]。 #### 定制化微调过程 基于通用版本的大规模预训练模型,针对具体应用场景——即本案例中的专利写作需求,实施进一步的小样本精调操作是非常必要的。此步骤旨在让机器学习算法更加贴合目标领域的专业知识体系,从而提高输出结果的相关性和准确性[^3]。 ```python from doupack_api import DouPackModel def fine_tune_model(training_data_path, model_output_dir): dp_model = DouPackModel() # 加载自定义训练数据集路径下的内容 training_dataset = load_custom_training_set(training_data_path) # 对模型执行迁移学习优化流程 tuned_parameters = {"learning_rate":0.001,"epochs":5} dp_model.fine_tune(training_dataset,**tuned_parameters) # 将调整后的参数保存到指定目录中 save_trained_weights(dp_model,model_output_dir) ``` #### 用户交互界面的设计 考虑到实际使用者可能并非都是AI专家,在前端界面上应当提供简洁直观的操作指引,并允许灵活输入待加工材料的形式(例如纯文本框或者上传Word/PDF格式件)。同时也要支持实时反馈机制以便于即时修正错误或补充遗漏信息[^4]。 #### 后端服务部署方案 最后关于如何高效稳定地运行整个系统,则需综合考量计算资源分配情况和服务可用性的保障措施等因素。采用云服务器集群配合负载均衡器的方式能够很好地满足高并发请求环境下的性能要求[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值