在全民AI的2025年,我原以为大家都对MCP耳熟能详了,至少搞技术的都应该清楚是怎么回事。然而现实总是出人意料。
前两天,一家专门做大数据的公司找到我咨询MCP Server的事情。与他们开发交流的过程中,我惊讶地发现他们对MCP的基本概念,甚至最基础的Function Calling都了解得不是很清楚。最后,他们领导决定让我线上给团队做了一个培训。
(原定三小时,但我只用了两小时就给他们研发组所有人都讲得清清楚楚!)
更让我惊讶的是,今天一位建筑行业的大哥也来咨询Cursor中MCP Server的配置问题。看到他的投屏我才知道,现在连建筑行业都开始用MCP了!大哥说近期他们行业,包括他们公司,都在主推AI,有些人会使用3D绘图的MCP Server,还给我介绍了前段时间爆火的blender-mcp (https://github.com/ahujasid/blender-mcp) 项目。
虽然大哥目前配置的只是一个让模型能够进行深度有序思考的Server-Sequential Thinking,但他这种积极拥抱AI的态度着实让我感动。
这些经历让我意识到,尽管AI技术日新月异,但仍有许多人对MCP这样的基础概念不够了解。所以我决定写这篇博客,希望能帮助大家初步了解MCP,不至于在这个AI时代掉队。
什么是MCP?用最简单的话说
MCP,全称Model Context Protocol(模型上下文协议),是一个开放的标准协议,用于规范应用程序如何向AI模型提供上下文信息。(其实就是一个标准而且,不要想的太复杂。只不过这个标准是由Anthropic——做Claude模型的那个公司制定的,比较有权威性而已。)
想象一下,MCP就像AI世界的"USB-C接口":
-
USB-C让你的电脑能连接各种外设(显示器、硬盘、键盘等)
-
MCP让AI模型能连接各种数据源和工具(文件系统、数据库、API等)
简单说,MCP就是让AI能够"看见"和"操作"外部世界的标准接口。
换句话说,它只是一个中心化的翻译官,具体的任务还是需要对应工具去执行(对应到AI应用就是Funtion Calling,显示器、键盘等就是一个一个的tool。)
为什么我们需要MCP?
在没有MCP之前,让AI使用外部工具和数据是件麻烦事:
-
每集成一个新工具,你都要写特定的代码
-
不同AI供应商有不同的接口标准
-
数据安全问题难以统一管理
举一个比较通俗的例子,就像你的GPT插件Claude用不了,或者你的Dify插件Coze用不了。
MCP解决了这些问题,它提供:
-
预构建集成:有大量现成的MCP服务器可以直接使用
-
灵活切换:可以轻松在不同AI供应商之间切换
-
安全标准:确保你的数据在你的基础设施内安全处理
就像有了JDBC规范,你可以随便连接使用任何实现这个规范的数据库(软件史上每一次统一规范,必会带来一次重大的变革!)
MCP的基本架构是什么样的?
MCP采用经典的客户端-服务器架构:
(来自官方:https://modelcontextprotocol.io/introduction)
主要组件包括:
-
MCP Hosts:就是你用的 Claude Desktop、Cursor、Cline等想通过MCP访问数据的程序
-
MCP客户端:维持与服务器1:1连接的协议客户端
-
MCP服务器:通过标准化协议暴露特定功能的轻量级程序
-
数据源:可以是本地文件、数据库,也可以是远程API
打个比方:如果把AI模型比作"大脑",MCP服务器就像各种"感官"和"肢体",让AI能"看到"(读取数据)和"动手"(执行操作)。
MCP的核心概念
MCP定义了三个主要概念(也叫"原语"),让我们用最简单的类比来理解:
1. 资源(Resources)
类比:相当于AI的"眼睛"和"耳朵",让AI能"看到"和"听到"信息。
实际上是:允许AI读取数据的接口,比如文件内容、数据库信息等。
例子:
-
读取本地Excel文件
-
获取网页内容
-
查看数据库结构
2. 工具(Tools)
类比:相当于AI的"手",让AI能"做事"。
实际上是:允许AI执行操作的函数,比如修改文件、发送请求等。
例子:
-
发送电子邮件
-
查询数据库
-
生成图片
-
执行代码
3. 提示(Prompts)
类比:相当于AI的"工作指南",指导AI如何完成特定任务。
实际上是:可重用的模板,定义AI与用户交互的模式。
例子:
-
代码审查模板
-
数据分析向导
-
翻译助手
MCP在实际中是如何工作的?
让我们看一个简单例子,用MCP来完成一个任务:
假设你想让AI帮你分析一个Excel文件中的销售数据:
-
连接阶段:
-
你的Claude Desktop(主机)连接到Excel读取器MCP服务器
-
-
交互阶段:
-
你告诉Claude:"分析我的销售数据表"
-
Claude通过MCP的资源接口读取Excel文件内容
-
Claude分析数据后,可能想生成一个图表
-
Claude使用MCP的工具接口调用图表生成功能
-
最后Claude呈现分析结果和图表
-
整个过程中,Claude不需要直接访问你的文件系统,所有访问都通过受控的MCP接口完成,既安全又高效。
比如你想从一堆波多野结衣老师的视频里找到一个叫“猴子万爆出装教学”的视频,只需要让MCP Sever(自己人)去查询就行,Claude是不会发现那些波老师的视频的,极大地保护了用户隐私。
MCP的实际应用场景
MCP已经在各行各业得到应用:
-
软件开发:连接代码库、文档系统,辅助编码和调试
-
数据分析:连接各种数据源,进行复杂分析
-
内容创作:连接设计工具、CMS系统,辅助创作
-
客户服务:连接CRM系统,提供智能客服
-
建筑设计:正如前面提到的,连接3D建模工具
免费的MCP Server 网站:
https://mcp.so/
https://glama.ai/mcp/servers
https://www.pulsemcp.com/
https://smithery.ai/
https://mcp.composio.dev/
https://github.com/punkpeye/awesome-mcp-servers
如何开始使用MCP?
根据你的角色不同,开始使用MCP的方式也不同:
作为用户
如果你只是想使用预建的MCP服务器:
-
安装支持MCP的客户端(如Claude Desktop、Cursor、Cline等)
-
按照指南配置需要的MCP服务器
-
开始使用增强的AI功能
这里以Cursor为例演示配置一个可以连接MySQL的 MCP Server:
1. 在https://smithery.ai/上搜索mysql:
2. 点击Cursor=>输入数据库连接信息=>点击 Save and Connect
3. 0.46及以下用命令,0.47及以上用json=>选择操作系统=>复制json/npm命令
4. 配置到Cursor=> 保存
5. 等待连接成功(信号灯变成绿色就连接成功了)
6. 开始享用(注意只有 Agent模式才能够使用MCP Server)
作为开发者
如果你想构建自己的MCP服务器:
-
选择合适的编程语言SDK(Python、Java等)
-
根据MCP规范开发服务器
-
测试并部署你的服务器
直观感受
最后通过不同MCP Server的配置来直观地感受一下为什么说MCP就是一个规范
{ "mcpServers": { "fetch-mcp": { "command": "npx", "args": [ "-y", "@smithery/cli@latest", "run", "fetch-mcp", "--config", "{}" ] } } }
{ "mcpServers": { "fs": { "command": "cmd", "args": [ "/c", "npx", "-y", "@smithery/cli@latest", "run", "@bunasQ/fs", "--config", "{}" ] } } }
{ "mcpServers": { "excel-reader": { "name": "Excel文件读取器", "description": "提供通过路径读取Windows本地Excel文件的功能", "command": "python", "args": ["D:\\VS_WorkSpace\\mcp_class\\read_file_server.py"] } } }
机智如你是不是已经看出端倪了呢?
结语
AI技术的浪潮正在改变各行各业,MCP作为连接AI与外部世界的标准接口,将大大降低AI应用的门槛。无论你是技术专家还是普通用户,了解MCP都能帮助你更好地利用AI工具。
正如开头所说,我希望这篇文章能帮助所有人——无论是技术人员还是非技术人员——降低使用AI技术的门槛,一起享受人工智能带来的美好生活。
这期主要是讲了一些通识性的概念。下一期,我们将从实战角度出发,手动实现一个MCP Server和Client来理解清楚原理。敬请期待!(感兴趣的可以点个关注哦!)
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓