最近,DeepSeek工程师在GitHub上高亮了来自腾讯的代码贡献,并用“huge speedup”介绍了这次性能提升。
什么样的优化技术让顶尖AI团队如此兴奋?
简单来说,是腾讯多年来调教数据中心和GPU通信沉淀下来的TRMT技术,帮助DeepSeek开源的网络通信神器DeepEP性能再上一个台阶。
这项合作的起点要追溯到今年2月——DeepSeek开源了包括DeepEP在内的五大代码库,揭秘了他们如何用1/5硬件资源实现传统万卡集群效能的核心技术。
其中,DeepEP作为突破NCCL性能瓶颈的通信框架,通过300%的通信效率提升,成功让众多MoE架构的大模型摆脱了对英伟达NCCL的依赖。
但这项技术存在“富贵病”:在成本较高的InfiniBand(IB)专用网络中如鱼得水,却难以适配更普适的RoCE网络环境。就像超级跑车只能在专业赛道驰骋,开上普通公路就性能缩水,这让大多数使用普通网络的企业机构面对DeepEP往往看得着、用不上。
DeepEP的Github主页上,也出现了关于RoCE网络环境中性能表现不佳的讨论,相关问题一直没有找到理想的解法。
但腾讯在RoCE网络领域可是老司机,多年来在数据中心沉淀了丰富的经验,在DeepEP开源后立即展开验证,迅速锁定两个关键突破点:
-
车道利用率低下:RoCE网卡普遍采用双端口架构,但既有系统无法智能分配流量,常出现单车道拥堵、双车道闲置的窘境,就像快递公司面对双向八车道却只使用一侧车道。
-
CPU控制瓶颈:虽然DeepEP通过RDMA技术实现了GPU直连通信,但在控制面交互层面仍依赖CPU中转,存在时延和能耗优化空间。
于是,腾讯基于TRMT技术体系开始对DeepEP进行三个方面的优化👇
//双车道充分用起来:拓扑感知的多QP建链
本质上是利用动态分配算法来最大化双端口网卡的带宽利用率。
在 AI 模型启动时,多个 GPU 之间会建立通信组。每个 GPU 组内,GPU 之间都要建立通信链接,并且每个 GPU 对需要建立多组 QP(队列对)。
这种架构涉及革新类似于智慧交通管理系统:当2048辆特种车辆(GPU数据包)需要在城市路网(RoCE网络)中高效通行时,控制系统为每类物资运输开辟专属路线(QP绑定端口)。
通过动态分配起始匝道口(UDP源端口),确保双车道物理通道(网卡端口)的车流均衡,从根本上避免了多车队汇入同条车道引发的堵塞,让双端口网卡带宽利用率达到理论峰值。
//进一步绕过CPU:基于 IBGDA 的多 Channel 负载均衡数据传输
RDMA直连GPU进行数据交互就像港口运货,货物到港后不用停下来卸货装车,可以直接运到市区。
但在“控制面”场景还是无法让GPU绕过CPU的控制。“控制面”类似港口处理哪个批次的货物到港、货物是什么、运货的车牌号是多少等等,这种“控制面”场景的信息还是需要CPU来处理。
腾讯基于IBGDA(InfiniBand GPU Direct Accelerator)技术,让控制面场景的CPU也绕过了,控制时延降低至硬件极限。
(看这清爽的右图,就知道IBGDR这种让控制面绕过CPU的方法提升了多少效率)
同时,腾讯还让每个 GPU 都能同时用多个“通道”来发送数据,而且这些通道会自动分配数据,不会让某个通道太忙而其他通道闲着。
//排好队不出错:原子化信令协同
在GPU直接通信时还存在一个关键难题:当A GPU直接把数据写入B GPU内存时(类似隔空投送),B GPU并不知道数据何时到达。如果多个数据传输任务同时进行,可能会发“先发的包后到”的混乱情况。
鹅厂工程师提出了一种叫做“QP内时序锁”机制,类似一种智能快递签收机制:每次传输数据时,通过网卡硬件自动生成数字指纹(类似快递单号加密),收件方必须按正确顺序“签收”。
现在,就算同时处理1000多个数据传输任务,系统也能自动理顺先后顺序。
这三板斧下来,DeepEP不仅在RoCE网络上实现性能翻倍,当DeepSeek将这套方案反哺到IB网络时,原本已经很优秀的通信效率竟然又提升了30%。
目前,这些技术成果都已经全面开源至DeepEP社区,并深度应用于腾讯混元大模型等项目的训练推理。在星脉网络与H20服务器构建的高性能环境中,这套方案同样展现出卓越的通用性。
最后,感谢DeepSeek工程师以及我的同事们,对GPU通信瓶颈难题的探索。
还有,感谢开源。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】