RAG入门秘籍:构建检索增强生成应用程序的终极指南!

概述:RAG(检索增强生成)是一种结合信息检索和生成模型的技术,允许用户将自己的数据与大型语言模型(LLM)结合,生成更精确和上下文相关的输出。这篇文章将简要介绍RAG的基本概念,并提供一个简化的教程,帮助初学者从零开始构建RAG应用程序。

一、学习RAG的挑战

在快速变化的AI领域中,特别是关于RAG,存在大量噪音和复杂性。供应商往往将其过度复杂化,试图将他们的工具、生态系统和愿景注入其中。本教程旨在帮助初学者消除这些干扰,专注于从头构建一个简单的RAG系统。

二、什么是检索增强生成(RAG)

RAG的核心思想是通过检索工具将用户的自有数据添加到传递给大型语言模型的提示中,以此生成输出。相比单纯依赖预训练模型,这种方法带来了多项优势:

  • 避免幻觉:通过在提示中包含事实信息,减少LLM产生幻觉的风险。

  • 参考事实:允许用户在回应查询时参考真实数据,验证潜在问题。

  • 利用未训练数据:可以使用LLM未曾训练过的数据。

三、RAG系统的基本组件

一个RAG系统由以下几个组件构成:

  1. 文档集合(语料库)

  2. 用户输入

  3. 文档集合与用户输入之间的相似性度量

四、RAG系统的操作步骤

  1. 接收用户输入

  2. 执行相似性测量

  3. 对用户输入和检索到的文档进行后处理

初学者可以通过以下步骤从头构建一个RAG系统,并逐步学习复杂的变体。

五、示例:构建最简单的RAG系统

1. 获取文档集合

首先,我们定义一个简单的文档集合:

在这里插入图片描述

2. 定义与执行相似性度量

为了比较用户输入和文档集合的相似性,我们可以使用Jaccard相似度。Jaccard相似度是指两个集合的交集除以并集的大小。以下是一个简单的实现:

在这里插入图片描述

接下来,我们定义一个函数来返回与用户输入最相似的文档:
在这里插入图片描述

3. 运行示例

我们可以通过以下代码运行一个简单的示例:

在这里插入图片描述

输出将是:
在这里插入图片描述

恭喜,您已经构建了一个基本的RAG应用程序!

六、改进相似性度量与添加LLM

虽然我们使用了简单的Jaccard相似度来学习,但它在处理语义上存在局限。为了进一步提升生成效果,我们可以引入大型语言模型(LLM)进行后处理。以下是一个集成开源LLM的简单示例:

import requests
import json

def query_llama(user_input, document):
    # 假设你有一个运行的LLM服务,可以发送HTTP请求获取生成的文本
    url = "http://localhost:8000/query"  # LLM服务的URL
    payload = {
           "prompt": f"User input: {user_input}\nDocument: {document}\nResponse:",
            "max_tokens": 50
              }    
    headers = {"Content-Type": "application/json"}
    response = requests.post(url, data=json.dumps(payload), headers=headers)
    return response.json().get("text")

response_with_llm = query_llama(user_input, response)
print(response_with_llm)

以上代码示例演示了如何将检索到的文档与用户输入结合,使用LLM生成更准确的响应。

七、总结与展望

RAG为LLM提供了一个灵活且强大的框架,允许用户利用自有数据来增强生成效果。本教程介绍了如何从头开始构建一个简单的RAG系统,并如何逐步引入更复杂的组件,如LLM。今后,您可以通过更先进的相似性测量和检索技术进一步提升RAG系统的性能。

零基础如何学习大模型 AI

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

AI+零售:智能推荐系统和库存管理优化了用户体验和运营成本。AI可以分析用户行为,提供个性化商品推荐,同时优化库存,减少浪费。

AI+交通:自动驾驶和智能交通管理提升了交通安全和效率。AI技术可以实现车辆自动驾驶,并优化交通信号控制,减少拥堵。


这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述

四、LLM面试题

在这里插入图片描述

如果二维码失效,可以点击下方链接,一样的哦
【CSDN大礼包】最新AI大模型资源包,这里全都有!无偿分享!!!

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值