HtmlRAG开源,RAG系统联网搜索能力起飞~

网络是RAG系统中使用的主要外部知识来源,许多商业系统,如ChatGPT和Perplexity,都使用网络搜索引擎作为他们的主要检索系统。传统的RAG系统将网页的HTML内容转换为纯文本后输入LLM,这会导致结构和语义信息的丢失

HTML转换为纯文本时的信息丢失

为此,提出了HtmlRAG,它使用HTML而不是纯文本作为RAG系统中外部知识的格式。为了应对HTML带来的长上下文,提出了无损HTML清理基于两步块树的HTML修剪(Two-Step Block-Tree-Based

HtmlRAG总体概述

  • 无损HTML清理:这个清理过程仅移除完全不相关的内容,并压缩冗余结构,保留原始HTML中的所有语义信息。无损HTML清理压缩后的HTML适用于具有长上下文LLMs的RAG系统,并且不愿意在生成之前丢失任何信息。

  • 基于两步块树的HTML修剪:基于块树的HTML修剪包括两个步骤,这两个步骤都在块树结构上进行。第一步修剪使用嵌入模型为块计算分数,而第二步使用路径生成模型。第一步处理无损HTML清理的结果,而第二步处理第一步修剪的结果。

**块分数计算。**块树通过分词器转换为令牌树,相应的HTML标签和令牌用相同颜色标记。令牌生成概率在右上角显示,虚线框中的令牌不需要推理。在块树的右上角,显示了块概率,概率可以从相应的令牌概率中推导出来

生成模型Prompt

Input:``**HTML**: “{HTML}”``**Question**: **{Question}**``Your task is to identify the most relevant text piece``to the given question in the HTML document. This text``piece could either be a direct paraphrase to the fact,``or a supporting evidence that can be used to infer the``fact. The overall length of the text piece should be``more than 20 words and less than 300 words. You should``provide the path to the text piece in the HTML document.``An example for the output is: <html1><body><div2><p>Some``key information...``Output:``<html1><body><div2><p>At the historic 2018 Royal Rumble,``Shinsuke Nakamura won the Men’s Royal Rumble. . .

在六个不同的问答数据集上进行了实验,包括模糊问答、自然问答、多跳问答和长形式问答,HtmlRAG在所有数据集上的表现均优于或等于现有的基于纯文本的后检索处理方法:BM25、BGE、E5-Mistral、LongLLMLingua、JinaAI Reader

https://arxiv.org/pdf/2411.02959``HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems``https://github.com/plageon/HtmlRAG

零基础如何学习AI大模型

领取方式在文末

为什么要学习大模型?

学习大模型课程的重要性在于它能够极大地促进个人在人工智能领域的专业发展。大模型技术,如自然语言处理和图像识别,正在推动着人工智能的新发展阶段。通过学习大模型课程,可以掌握设计和实现基于大模型的应用系统所需的基本原理和技术,从而提升自己在数据处理、分析和决策制定方面的能力。此外,大模型技术在多个行业中的应用日益增加,掌握这一技术将有助于提高就业竞争力,并为未来的创新创业提供坚实的基础。

大模型典型应用场景

AI+教育:智能教学助手和自动评分系统使个性化教育成为可能。通过AI分析学生的学习数据,提供量身定制的学习方案,提高学习效果。
AI+医疗:智能诊断系统和个性化医疗方案让医疗服务更加精准高效。AI可以分析医学影像,辅助医生进行早期诊断,同时根据患者数据制定个性化治疗方案。
AI+金融:智能投顾和风险管理系统帮助投资者做出更明智的决策,并实时监控金融市场,识别潜在风险。
AI+制造:智能制造和自动化工厂提高了生产效率和质量。通过AI技术,工厂可以实现设备预测性维护,减少停机时间。

这些案例表明,学习大模型课程不仅能够提升个人技能,还能为企业带来实际效益,推动行业创新发展。

学习资料领取

如果你对大模型感兴趣,可以看看我整合并且整理成了一份AI大模型资料包,需要的小伙伴文末免费领取哦,无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

部分资料展示

一、 AI大模型学习路线图

整个学习分为7个阶段
在这里插入图片描述
请添加图片描述

二、AI大模型实战案例

涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

三、视频和书籍PDF合集

从入门到进阶这里都有,跟着老师学习事半功倍。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、LLM面试题

在这里插入图片描述
在这里插入图片描述

五、AI产品经理面试题

在这里插入图片描述

😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~
在这里插入图片描述

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值